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Spontaneous Emission and Nonadiabatic Electron Transfer Rates in Condensed Phases
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In this paper we explore the non-Condon effect of fluctuations of the tunneling matrix element caused by a
condensed medium on the rates of nonadiabatic electron transfer (ET) and spontaneous emission from an
excited electronic state. For a charge-transfer complex immersed in a polar polarizable liquid, the solvent
effect renormalizes the ET matrix element due to (i) the instantaneous field of the solvent nuclear polarization
and (ii) equilibrium solvation by the electronic solvent polarization. Fluctuations of the classical electric
field of the solvent affect the form of the preexponential factor in the ET rate constant. In the new expression
for the rate preexponent the vacuum ET matrix element is multiplied by the faétoming an effective ET

matrix element in condensed phases. The pararfiasecontrolled by the magnitude and orientation (relative

to the differential solute dipole) of the diabatic transition dipole of the charge-transfer complex. The theory
predicts a possibility of localization of the transferred electron whdrecomes equal to zero. The same
treatment is applied to the rate of spontaneous radiative electronic transitions. We find that the product of
the transition frequency and the adiabatic transition dipole is invariant in all solvents when (i) the diabatic
transition dipole is collinear to the differential solute dipole moment and (ii) the spectral shift due to dispersion
solvation is small. Under the same conditions, the adiabatic transition dipole in condensed phases and the
effective ET matrix element are related by the Mullikgdush equation that becomes exact in our treatment.

1. Introduction excitations of the solvent is much higher than the frequengy
. associated with the vacuum adiabatic energy gdp= hwo
Electron transfer (ET) proceeds as quantum tunneling betweenpeween the donor and acceptor electronic states. In this case,
two electronic states localized at the donor and acceptor sites.he transferred electron, like a small molecular polaron, is
A condensed environment solvates the donor and acceptor«yressed” by the equilibrium field of the solvent bound electrons
resulting in two major effects: (i) the energy levels shift relative 4 adiabatically follow the redistribution of the electronic
to each other and (ii) the tunneling probability is modified by gensity between the two states. In order to include equilibrium

the medium field resulting in the solvent dependence of the ET g4}y ation by the solvent electrons the BO surfaces should be
matrix element. The present paper is concerned with the |atterreplaced by the (partiafyee energies

focusing on the effect of electronic solvation and nuclear
fluctuations on the ET matrix element and on the rates of exp[-BE({Q})] = Tr, (exp[—AH,]) (1)
radiationless and optical transitions. We provide a unified e ted '

description of these two phenomena resulting in explicit relations . -ineq by averaging the system density matrix €@} over

between optical parameters and thermal activation properties.i o solvent electronic degrees of freedom. In eq 4oyTis the
The condition of tunneling in a quantum system is the equality trace over the electronic subsystem of the solvehtis the

of two eigenvalues of the system Hamiltonian. When a diabatic Hamiltonian of the solute and the solvent, ghe

thermally fluctuating nuclear subsystem is involved, this 1/(kgT).5 Electronic transitions thus proceed between the

requirement is usually formulated in terms of the Bern  diabatic state&({Q}) as a result of nuclear fluctuations leading

Oppenheimer (BO) decoupling ansatz leading to the condition tg the resonance conditidy({Q}) = E{Q}).

of resonance between two electronic te@iS({Q}), i = 1, 2 This scheme is realized under the requirement of timescale
at the same nuclear configuratiofQ}: EJ°({Q}) = separation

E5°{Q}). Yetit does not provide the whole picture when the

electronic subsystem of the solvent is included. The electric Wy << Wy << g )

field of the transferred electron polarizes electronic shells of

the solvent molecules creating electronic polarization in the wherew,, is the characteristic frequency of the nuclear modes.

solvent. The latter affects back the electron localized at the [For a continuum spectrum of nuclear modes, the upper cut-off

donor and acceptor sites shifting the corresponding electronicfrequency should be consideredag. For nonadiabatic ET,

energies. Because of the self-consistent character of thisthis picture naturally leads to the golden-rule expression for the

solvation effect, the calculation of electronic energies becomes rate constant. Yet, before writing it down, we turn our attention

a nontrivial probleni* The problem simplifies when the  to the physical concept of how the medium affects the electronic

bound solvent electrons are much faster than the transferredsubsystem.

electron? This implies that the frequenays of the electronic The solvation effect of the condensed medium on the ET

system is commonly associated with the interaction of the solute

t From June 1, 1998: Department of Chemistry, University of Utah, charge distribution with the solvent fiell For a dipolar solute,

Salt Lake City, Utah 84112. the solute-solvent interaction term in the electronic Hamiltonian
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reads In eq 3,
—MyE AE({Q}) = E({Q}) — E.{Q})

wheremy is the solute electric dipole operator. [Note tiias 0.0= Zi_lf ..expBE({Q})] dT
need not be a point dipole.] The diagonal matrix elements of )

the electronic Hamiltonian yield the electronic energy levels. _ _

These energies are shifted from their vacuum values due to the 4= f exp—AE( Qhldr, dr'=dQ;...dQy
diagonal solvation termsmgE, wheremy; is the solute dipole
moment representing the solute charge distribution initie
statej=1, 2. Fluctuations of the medium field eventually result
in the resonance of the two localized states at which electronic
transition may occur. Further, the off-diagonal matrix elements
of the electronic Hamiltonian give us the ET matrix elements.
The off-diagonal matrix element of the electronic Hamiltonian
contains also the off-diagonal solvation term

and integration runs over the configurations Nf solvent
molecules. The superscriptn the rate constark); refers to

the equilibrium distribution over which the averagiagllis
performed;i=1 for the forward (1— 2) reaction and = 2 for
backward (2— 1) ET. Equation 3 is of course a well-known
one differing from the classical Levich thedrgnly through

the dependence of the ET matrix element on the solvent
configuration.

The rate constant given by eq 3 will form the basis for our
development in section 2.2 below. The explicit dependence of
1. » ] ~ [V1{Q})| on the nuclear configuration will be given in section
wheremg® is the transition dipole. As a result, the ET matrix 2 1 in terms of a two-state solute model. Two-state models (or
element W|” depend on the f|UCtuatII’]g SO|Vent f|e|d and, hence, the equivalent description in terms Of the S..pb—oson Ham”_
will fluctuate itself. Of course, the off-diagonal matrix element tonian) have been widely used in EF2d3 and optical
—my*E is small compared to the diagonal onemq-E. spectroscopy~14 applications. The two-state description is
However, in the same way, the ET matrix element is small easily extended to an arbitrary number of solute electronic
compared to the electronic energies for nonadiabatic transitions.stated’ and, in fact, the nonadiabatic ET rate constant derived
One might expect that the relative effect of the off-diagonal in section 2.2 is not restricted to two states. The time-separation
solvation term on the ET matrix element is of the same order requirement given by eq 2 usually forms the basis for construct-
as the effect of the diagonal solvation term on the electronic ing theories of nonadiabatic ET. Our development will be more
energy levels. The goal of this paper is to quantify this effect. general. The nonadiabatic rate constant is derived in section
As we show below, a condensed medium really modifies 2.2 for an arbitrary ratio of the solute and solvent characteristic
substantially the preexponential factor of the nonradiative (ET) frequencieswo and ws, under the only requirement that they
rate constant and the adiabatic transition dipole of the radiative are quantum frequencies much higher than the classical fre-
transition. The two quantities turn out to be connected by an quencyws
analog of the Mulliker-Hush relation that becomes exact when
the solvent effect is correctly taken into account for both w, < W, W, << g
quantities.

The dependence of the ET matrix element on the nuclear We will show that the only consequence of removing the
subsystem in usually neglected in the Condon approximation restrictionwo < ws is the renormalization of the ET matrix
fixing the ET matrix elements at a constant set of solvent nuclear element in the form of the FranelCondon factor of shifted
coordinates. In this terminology, our desire here is to examine oscillators associated with the solvent electronic polarization.
non-Condon effects due to fluctuations of the ET matrix element  The problem closely related to the solvent renormalization
produced by the fluctuating classical electric field of the of the ET matrix element is the controversial question of the
condensed medium. We do not consider here the coupling of solvent dependence of the transition dipole of optical transitions.
the ET matrix element to quantum skeletal vibrations of the We address this point in section 2.3, where we derive expres-
solute usually related to corrections to the Condon sions for transition dipoles and emission lifetimes. Finally, our
approximatiorf2P We will also assume the stationary limit in  results are summarized in section 3 where we show that a unified
which the homogeneous broadenifi@, is much lower than treatment of nonadiabatic ET reactions and optical transitions
the inhomogeneous broadeniagisually connected to the ET  is possible in terms of an effective ET matrix element and the

12
—my™E

classical reorganization energy by the relation:o0? = 24¢kgT. equilibrium adiabatic transition dipole.
Therefore, the dynamical corrections to the Condon approxi-
matiorfc—¢ are not considered here. 2. Nonradiative and Radiative Rates

The preceding is intended to clarify the basic physics 51 Two-Level Solute. Descriptions of intramolecular ET
employed in the present paper. In fact, as we will see below, anq optical transitions are essentially isomorghié8 We
the effect of the condensed medium on the ET matrix element therefore use here a formulation applicable to both problems.
is more complex and is determined by two major factors: (i) The solute is considered to possess a dipole momerin the
instantaneous field of the solvent nuclear subsystem modifying jnitial state changing tamo, with electronic transition (the
the tunneling barriér -4 and (ii) equilibrium solvation by the subscript “0” throughout below refers to the solute). The

solvent electronic polarization reducing the tunneling probability pamitonian of the two-state solute immersed in a polar
by a Franck-Condon factof22449 Because of the first  pojarizable liquid can be written Hs

component, the ET matrix elemeWiA({Q;}) depends on the
solvent nuclear configuration and the nonadiabatic rate constant

2
reads Ho= Z[Ii —mg(E, T EJ] a" a +

kY = 2V, QD) IPO(AE{ Q)T (3) [Vio — mg™(E, + EJl(aya, + a3a,) (4)
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Here,a:’ anda are the creation and annihilation operators in upmf)i, respectively. In the continuum solvent description the

theith state with the diabatic vacuum energhifted by the
interaction of the diabatic solute dipotey with the instanta-
neous fields of the molecular fixeBy,, and inducedEe, charges.
Similarly, the vacuum ET matrix eleme¥it, is affected by the
solvent field due to a nonzero diabatic transition dipole moment
mg’.

The transition momeniny’ is the off-diagonal matrix ele-
ment méz = [¢1|Mo|@2of the solute electric dipole moment
operatomg taken in the vacuum diabatic bagig1, ¢2}. In a
broad sense, the orientationmf’ is not totally defined, since
the transformatiorp; — —¢j, which does not affect observables,
reverses the direction of the transition dipatg® — —m;’.
However, the same transformation switches also the sigfa.of
The sign of the ET matrix element by itself does not have any

response functions for spherical solutes are given in terms of
the Onsager reaction field as

&1 8
He™ 2e, T 1R ®
and
&1 e—1]1
BT 2e +1 7 2¢, T 1R ©)

whereRy is the cavity radius and. andes are, respectively,
the high-frequency and static dielectric constants of the solvent.
The potential energy term in eq 7 can be obtained from a

physical meaning (although it does make sense to think of a more general molecular-based Hamiltonian of the solvent bath

sign switch with, for example, the nature of the donacceptor
bridge'®@P or in a hopping sequence in a superexchange ET
pathway®). Nevertheless, the combinatidf, — mg> (B, +

Ee) is meaningful, since botk;» andm}? change in the same
way under the sign switcly — —¢;. In fact, as we will see

below, the observable quantities such as the ET rate constant
and the transition moment depend on the ratio of the projection

of mg? on the differential solute dipole and,. This ratio is
invariant under the switchpi — —¢; and hence the quantities
based on it are physically meaningful.

The diabatic transition dipolem;’ should not be confused
with the adiabatictransition dipoleM” that is usually consid-
ered in optical spectroscopy of charge transfer compl&®s.

In the two-state model, the transition momeéng is the off-
diagonal matrix element of the electric dipole operator taken
on adiabatic wave functions diagonalizing the vacuum solute
HamiltonianHo(E, = 0, Ee = 0) (see the appendix)

12A| V12

Mo”=mg°A3 — Amgzs

®)

Here, Amg = mo, — Moy is the differential solute dipole and
AJ is the adiabatic vacuum energy gap

1
N=3-3, 3=3lL T LF Y0~ L+ 4V 6

with “—=" and “+” referring toi = 1 andi = 2, respectively°

A linear transformation of the diabatic basis can be used to
diagonalize the diabatic dipole moment matrix Ieadingréé

= 0.2 Such a transformation complicates the two-state Hamil-

tonian 4 and we will not pursue this approach here (see SeCt'onbecomels'ﬂ

3.1 below).

Now we need to specify the solvent Hamiltonidths.
Following Gehlen et aBwe give it in the form of two harmonic
collective modesE, andEk,

H = 4:tE +—[E + ;2B = U[E, EJ+%E§
e’r’'s
@)

Since the fieldE, is a slow nuclear mode (according to the left
inequality in eq 2), we excluded a corresponding kinetic energy
term from eq 7 (BO decoupling). The kinetic energy is however
retained for the fast quantum motig.??

The response functiong andyp in eq 7 have been chosen
so that the equilibrium chemical potentials of solvation of the
dipole mg by electronic and nuclear subsystemspgreé and

Hg by projecting out the two collective mod@&g andEe

= [O[E,{Q}) — EJl x
N

0 [E{Q}) — Edexp[—fHeg] |_j dQ dQ (10)
=

exp(-pU [Ey, E])

The cumulant expansion in eq 10 truncated after the second
cumulant3 will result in the Hamiltonian 7. The details of the
molecular model and approximations used in averaging affect
only the definitions of the response functignsandue. Once
these are specified, a molecular description will be equivalent
to that of eq 724

The whole system HamiltoniaH = Hp + Hs as given by
egs 4 and 7 is equivalent to that of a molecular polaron, i.e., an
electron in either of two states coupled to an optical medium
phonontab The free energy of the molecular polaron can be
found under very general assumptions according to the following
proceduré?? First a canonical transformation eidp[H
exp[—iL] usual for polaron and exciton problefAss applied
to the system Hamiltoniai. The transformation with. [
(al a — a, 7a2) Pe (Pe = Ee/Z,uewS is the momentum conjugate
to Ee) removes the solutesolvent interaction term in the
HamiltonianH and changes the basis of the solvent from that
of a harmonic oscillator to a coherent state of a displaced
oscillator. Then the infinite order perturbation expansion over
the hopping Hamiltonian is uséd. This expansion can be
summed under the assumption of the quantum character of the
solvent electronic excitationiws> 1. The instantaneodsee
energyE® of the two-state system equilibrated to the quantum

field Ec and depending on the nuclear configuratip@;}
E°= (E, + E))/2 — fYIn[2coshBAE/2)]  (11)

where
AE = JAE? + 41V,,? (12)

In egs 11 and 12, the energy gAR = E, — E; is between the
two diabatic energieE; (eq 1) defined in our model (egs 4 and
7), by the relation

E =

i =1 — mg-E, + E" (13)
E'® specifies the nonpolar potential arising as a result of
averaging over the electronic solvent polarization. It includes

the dispersion solutesolvent potentiaEidiSp and the induction
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free energyF® = uemp, of the interaction of the solvent-  rule expression for the rate constant the transformation fiom

induced dipoles with the solute permanent dipole to S is achieved by including the FranelCondon factor of
skeletal solute vibrations resulting in an additional contribution
EP= EidiSP+ Fe (14) to the exponential renormalization V..

The transition from thevs cut-off frequency in our present
treatment tavq in ref 28 is a special case of the general rescaling
procedure adiabatically eliminating oscillators with high fre-
quencies by renormalizing the hopping matrix elent@€nt.he
process may be continued to a finite renormalized hopping
matrix element withwq — 0. For subohmicJ(w) O oS (s <
1), and, under additional conditions, ohmi§w) O w, forms
of the spectral density the rescaling results in the phenomenon
of localization wheV—0 with lowering temperatur®. In the
derivation presented in the next section we demonstrate a
possibility of localization at high temperatures whm’jg
passes through zero due to the solvation terms in eq 15.

The analysis performed above is easily generalized to a solute
with more than two electronic levels= 1, ...,n.18 Equation
13 remains intact in this case and the effective matrix element
between the statdsandj become¥18

When the timescale separation 2 is used in calculating the
dispersion term, we gédisP = —u¢|m;72.1826 This expression

is of the zeroth order in the ratiog/ws, wo = AJ/h neglecting

the retardation effects of solvation by the bound solvent
electrong® In this limit, E9sPis independent of the solute state
and AEdisp = EJ — ES*Pjs equal to zero. A more accurate
result can be obtained by implementing the Drude oscillator
model for the solute induced dipéfeor in the framework of

the quantum perturbation thecty.Both approaches lead to the
London form of the dispersion potential depending on the solute
state even for a two-state solute. We discuss this in greater
detail elsewheré and now just label the dispersion potential
with the subscript indicating the dependence on the solute state.

The renormalized ET matrix elemeXi. in eq 12 includes
two physically different components. First, it is affected by
the instantaneous field of the permanent solvent dipoles and o i i
equilibrium solvation by the induced dipolés Vi =V — mg-E,, — 2ug(Mg M)

ff__ 12 12, Therefore, the rate constant of nonadiabatic ET between the
Viz = Vi, — Mg E, — Zudmg o) (15) states = 1 andj = 2 derived in the next section is not limited
to a two-state solute and is equally suited to solutes with an
arbitrary number of electronic states.

2.2. ET Rate Constant. Now we calculate the nonadiabatic
rate constant from the golden-rule expression 3 and egs 13
16. The averaging of thé-function in eq 3 is performed by
using the common representation

wheremg = (mp1 + Mo2)/2. Second, ET results in a displace-
ment of quantum oscillators representing molecular polarizabil-
ity. The ET matrix element acquires hence a FranCkndon
factor of the displaced oscillatdr&!4f.9.28

_ A

L eff _1
Vie= Ve exp[ Zse]’ > he (o IV 1, *0(AB)= [ (d&/27)0N 1,|° explEAE] (17)

An e_xpression anal_ogous to egs 15 and 16 has bee_n obtainegyygye we have projected out two solvent fielisandEe from
by Kim and Hyne&'in terms of the diagonal and off-diagonal  the whole manifold of the system degrees of freedom and then
matrix elements of the solute electric field interacting with integrated overEe to get the diabatic free energies and the

continuum solvent polarization. renormalized ET matrix element. The averaging in eq 17 thus
The ET matrix element given by eqs 15 and 16 should be (gquces to that over the inerafield Ep

substituted into egs 11 and 12 to give the instantaneous free
energyE® for an arbitrary ratiavo/ws not restricted to the time- . 12, 2
separation condition 2. The exponential facdrenormalizing m[EP]Q_ (ﬂ/47wp) [_ﬁﬂpmgi]ff[Ep] exp [_(ﬂEP/A'MD) +
Ve to V1, disappears in the limitos — o implying that the Bmy-Ey] dE, (18)
only difference between the effect of an arbitrary quantum field

Ee and a field much faster than the solute electron (in terms of  If we omit the solvent dependence 6f, and putVi, = Vi,
eq 2) is the appearance of the renormalization factor eqs 3, 17, and 18 give the well-knoWwexpression for the
exp[-%.S] in the ET matrix element. This result, obtained first nonadiabatic ET rate

for molecular polaron& has been recently rederived by Song

and Stuchebrukhov in application to B¥.In their treatment, , AF?
the renormalization of the hopping matrix element is caused ki = AWFC(AF), FC(AF,) = expg— TR
by a continuum spectrum of solvent modes with frequencies P
higher than a quantum cut-off frequeney

(19)

Here, A, = ﬂpAmé is the reorganization energy of the inertial
solvent polarization,

2
rn =) (20)

p

w J(w) d
S=2

where J(w) is the spectral density of harmonic oscillators
modeling the thermal bath. The cut-off frequeneyhas been
attributed in ref 28b to the effective frequency of quantum AF; = Al + AE™ — 2u,(Amgmg)

skeletal vibrations of the solute instead of the electronic

excitation frequencys in the present formulation. As aresult, andAE"™ = E,° — E}” is according to eq 14.

S, becomes higher tha&: further lowering the effective ET The energiesAF; have a simple connection to optical
matrix element (“induced nonadiabatici&®). There is actually spectroscopy defining the wavenumberof absorption i( =
no contradiction between the two descriptions. In the golden- 1) and fluorescence € 2) transitions shifted from the vacuum
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gap hcvg = Al by differential dispersion solvatih hcApdisp
= AEdsP and the effect of induced and permanent dipoles

heAD = —2u(Amy'mgy) F AF®
where =" and “+" refer toi = 1 andi = 2, respectively. The
total transition energy is thus

AF, = hcp, = hd v, + AT+ AT

The Franck-Condon factor FCAF;) in eq 19 is easily general-
ized to include quantum skeletal vibrations of the soféte.

When the ET matrix element 16 is used in eqs 3, 17, and 18,
we get a Gaussian integral over the inertial fi@d The
integration is straightforward resulting in the nonadiabatic rate
constant given by eq 19 where the preexponential fastar
should now be replaced by the relation

o _OPLS)

h (J;_ﬂ)l/2 [IV.0,1° + Zﬁ_lﬂp|(méz'x)|2] (1)
P

The paramete®; in eq 21 determines the deviation of the
effective ET matrix element in condensed phases from the
vacuum value/i,. For general orientations of the ground and
excited state solute dipoles, it is given by the expression

12 o
mg™2) di AE,;
0.=1— Al + AE™P) — —= 22
I Amovlz( ) 5 (22)
with
AE,; = (Mg™)(ud % (Mo + Mop)] + 2u(Mgi+X)
Equation 22 simplifies for collineamy; to33
12 5
mgy™2) g
0=1— (Al + AEY*P) (23)
AmpVy,

In eqs 2123,z = Amg/Amp andX is a unit vector perpendicular
to 2 in the plane formed byAmg andmg®.

Equation 21 shows that two factors cause electronic transitions
when Amg and méz are not collinear: (i) tunneling coupling
with the strengthVi20;| between the diabatic states (the first
summand in the brackets in eq 21) and (ii) thermal fluctuations
(OksT) of the solvent polarization in the direction perpendicular
to thez-axis of redistribution the electronic density (the second
summand in the brackets in eq 21). The solvent effect on the
preexponential factor is controlled by two parametegsand
mg>. S is small for the usual ET conditions and may be
omitted in most casesm? is a vector and both the angle
betweenAm, and m;® and the magnituden,” determine the
extent of deviation of the rate constant preexponential factor
from the prediction of eq 20: we recover eq 20 fof* = 0.

If m3?is directed along the-axis, we haveriz%) = 0 and
eq 23 suggests an interesting phenomenon of self-localization
of the transferred electron whéh= 0. The condition for this
to occur is

mp2(Al + AET) = AmpV,, (24)
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Equation 24 can be rewritten in the two-state model using the
vacuum adiabatic transition dipole 5 yieldinyg%sPis usually
negativé3h)

ME2Al = —mp?AESP

In the case when the dispersion shift is negligeable (recall that
AEdsP = 0 for a two-state solute witlwy < wg), the above
condition transforms td5° = 0 implying that self-localization
occurs when the vacuum adiabatic transition dipole is equal to
zero due to mutual cancellation of the two summands in eq 5.
As we show below, the passing of the adiabatic transition dipole
of LIF through zero as a function of internuclear separation
follows from the quantum mechanical calculations by Werner
and Meyer!2 This result indicates thatg?| and|AmgViJ/Al|
(IV1i2Al] < 1) can indeed be close in magnitude in real charge-
transfer systems.

2.3. Radiative Rate and Transition Dipole. The influence
of the solvent field results in the renormalization of the ET
matrix element. Most experimental information about this
parameter is extracted nowadays from transition moments of
optical spectral lines. We therefore need to understand how
the solvent effects discussed above influence the observed
transition dipoles. We address this point here limiting our
consideration to the two-state solute model.

Since the landmark work of Mulliket,the radiative lifetimes
of emission staté$ and oscillator strengths of absorption
transitiond* in charge transfer (CT) complexes are described
in terms of the adiabatic transition dipcm&z(l)2 (eq 5, see also
eq A3 in the appendix). Below we will improve upon the
classical results of the theory of spontaneous radiation rates in
vacuum by explicitely taking into account fluctuations of the
transition moment caused by the solvent thermal motions. The
main component of this derivation is the two-step renormal-
ization of the vacuum adiabatic transition dipole. Following
the procedure outlined in section 2.1, as the first step, we will
define the instantaneous transition dipdlé? equilibrated to
the electronic subsystem of the solvent, but fluctuating with
nuclear solvent configurations. Next, we will average the
transition probability over the nuclear solvent fluctuations. The
radiative rate constant (eq 34) is then expressed through the
average (M3 of the instantaneous dipol&1? over the
equilibrium configuration of the solvent corresponding to the
solute excited statd & 2 ).

The definition of the instantaneous transition dipMé? is
straightforward in terms of the procedure outlined in section
2.1. A canonical transformation of the system Hamiltortn
= exp[iL] H exp[—iL] changes the basis of harmonic oscillators
representing the solvent electronic polarization to a coherent
state of displaced harmonic oscillators. The average of the
system density matrix exp|fHg] over the solvent electronic
subsystem yields the adiabatic ground skftéeq 11) built on
diabatic statess; (eq 13) and the renormalized ET matrix
elementVi, (egs 15 and 16). The diagonalization of the two-
state Hamiltonian composed Bf as diagonal elements aivd,
as off-diagonal elements gives the instantaneous adiabatic
transition dipole

12— aent-t.5)| mi2E _ am 22

M~ = exp( /259)[”10 AE AmoAé] (25)
whereAE is given by eq 12.M12 depends on the instantaneous
nuclear configuration of the solvent through the inertial field
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Ep enteringAE, AE, and\/‘ifzf according to egs 12, 13, and 15, frequency skeletal mod&or using the vibronic profile of the

respectively. emission band obtained from experiment. The latter approach
Once we have the instantaneous adiabatic transition dipole,was used in the StrickletBerg theory® and, following their

we need to determine an observable quantity (ensemble averagedrguments, we come to the final expression for the radiative

involving M12 The quantity usually available from experiment rate constant

and directly connected to the magnitude of the adiabatic

3
transition dipole is the rate of spontaneous emissigmthat 327°f(e,,) o3 2, 12@
can be written &% Kaa= T (M), — 2(mg™Amg) 5T, he
—\ d— 12
0= [ Kad )0 (26) Anﬁwzqv( ) ] (32)
where Here
647f(e,
kad?) = # ‘MMM o(her — AB)G,  (27) a0, = ST dv
2

In eq 27,7 is the wavenumber (in cnt ), [I..3,, denotes an fv Ii(v) dv
ensemble average over the vibrational excitations of the soluteand|(v) is the intensity of the fluorescence spectrum (in terms
(v) and over the fluctuations of the inertial field( (eq 18)) of relative numbers of quanta at each frequency). If we neglect

with the solute in the excited ¢ 2) state. f(e.) in €eq 27 isa  the effect of redistribution of electronic density between the
function of the high-frequency dielectric constant of the two ET states on the transition dipole and it = 0 in eq
solvent. In the classical StrickleBerg theory?® f(e..) = 32, we obtain the analogue of the radiative rate constant in the
ei,’z. When the vacuum electric field of incident light is  Strickle—Berg theory®

replaced by the local Lorentz field of the induced solvent

dipoles, one obtainf{e.) = /€. [(€x + 2)/3]2.36 Since other ~ 327°%(e,)
forms off(e.,) are also used ir:/t;e literatufewe will not specify KiadV) = ngg\)(méz)z (33)
f(ew) in the derivation below.
From egs 26 and 27 we have which contains only the average freque@%;lv. The major-
. ity of experimental emission rate data are treated according to
_ 64r7f(e.,) MEPAE )2 08 eq 33 and only@3[, is commonly available. Therefore, for
ad ™ 3Kc3 OM™1HAE)E, (28) the theory-experiment comparison a simplification of the

general expression 32 is desirable. This is achieved by analogy
The average ovel, in eq 28 can be taken exactly if we replace  with eq 33
ArI]E by AEH which _ilg,hg ve_ryI Oglgood approximation for most optical 32n3f(e )
chromophores. is yields = o WEQVIEM 12g|2 (34)
(IM™HAE)3 = e AR [mg°AF; — Am[Vi;[]* +

{terms proportional té T} in terms of the adiabatic transition dipole at the equilibrium

solvent configuration
A _lg 35
"o g i (35)

We denote the projections @f112lon the directiorz of the
32713“600) N s . ) differential solute dipole and that perpendicular toXitas
Kea="35 € @AMo72~ AmgV, /T (29) longitudinal, (M%), and transverseM!?);, componentszand
X are defined after eq 23). The equilibrium transition moment
Here m/‘lefzfg is the ET matrix element corresponding to the 35 can be obtained from eq 30 for arbitrary orientations of the
solvent configuration in equilibrium with the excited solute state. Solute dipole moments in the ground and excited states. Since

For arbitrary orientations of the ground and excited solute dipole the equation is rather cumbersome, we give here the transition
moments we have dipole only for collineamg. In this case, eqs 31 and 35 yi&ld

The second summan@kgT) is of the order 1BAF; of the first

one. For usual magnitudes of optical energy gapsamount- M 12@
ing to several electron volts we can neglect the terms propor-

tional toksT and write

= exp(Y

VESE= Vi, — 2u(Mg™mg) — 2u(mg>my)  (30) (M™%, = exp(=",S) (Mg™R) (36)

The two solvation terms in this equation are connected to the hci(M'?), = exp(—',S,) [((Mg*2)(Al + AE™? — AmyV,,]
optical spectral shifA#’ due to induction and dipolar solva-
tion when bothmo; andmg; are collinear and hence are oriented and

alongz '
[ MY0) = e = (F(mg>R)? + [(Mme%2)(7, + AT —
) ~ 2
V5= Vyp + ——— Amo heA#? (31) AmyV/hd?) (37)
Equation 35 suggests that, because of unequal transition
The averaging over the vibronic envelope of the emission energies and equilibrium ET matrix elements for absorption and
band in eq 29 can be performed in terms of a single high- emission, adiabatic transition moments are also uneguéi]
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= [M!23. This is in contrast to the conjugate relatid*= and those from classical studies on nonadiabatic ET and CT
(M3%)* for the corresponding vacuum values. Note also that Spectrd*'4 is the new expressions for the rate constant
from eq 36 the following inequalities hold preexponent (eq 21) and the adiabatic transition dipole (eq 35).
The origin of the difference is the renormalization of the ET
[MHQ > [MHQ matrix element which has not been accounted for in previous
studies. The key parameters of the renormalization are the
for positively solvatochromic dyes withnoz > mog, 72 < 71 orientation (relative to the differential solute dipole moment)
and and the magnitude of the diabatic transition dipmé2 which
we discuss next.
A+ < MY 3.1. Diabatic Transition Dipole and ET Rate. The diabatic
transition dipolemé2 is commonly neglected in the theories of
for transitions withmoz < Moy, 72 > V1. ET7 and spectroscopy of CT complexés!434 |t is assumed

Expressions 36 and 37 are the major results of the derivationthat optical CT transitions occur due to the adiabatic transition
in this section. From eq 36 we learn that the product of the dipole
longitudinal projection I(/Iilz)“ on the average transition fre-
quency; depends on the solvent only through the differential 1 Vi,
dispersion termAE"sP.  Since AESsP is not directly related to Mynt= —Amg = (39)
solvent polarity, a dependence @af8'2] on solvent dipolar :

strength, if it exists, is caused by a nonzero transverse projection . .
(M2 The latter can be found when transition dipoles are that depends on the solvent only through the vertical transition

known for both absorption and emission, since energyhcr;. Approximation 39 goes back to Mulliken (CT
spectra)? Hush (intervalence transitions)and Hopfield!2 The
[1—/1|:M12q]2 _[1—/2[M12g]2 _ —Se(m(l)z_)fi)z(,‘—/i _ 1—/5) most thoroul%]h analysis of th_e accuracy of eq 39 belongs perhaps
to Mulliken ! although Hopfield estimated the error of neglect-
_ _ . 12 . 0 _ . . .
~ 2(M12)2DVOAVst (38) ing of my~ amounting to 25% for long-range ET in biological

systems?2 According to Mulliken (ref 10, chapter 3.4), the
omission of the diabatic transition dipole can be justified only
for strong donor-acceptor complexes (laflyg,|). For weak
complexesmé2 “might be large enough to give some consid-
erable intensity to the CT ban®’ even when the charge
Fi12 = 0.47 x 10761—4']/'12[‘2 redistribution termvlegolhcw results in very IitFIe intensity.
The nonzero value ofn;” “may well often explain the rather
considerable intensities of CT absorption bands for weak
complexes®® and high rates of spontaneous emission (see
below). It is therefore the case of weak coupling (snéibl),
which is of major importance for ET applications, where,
according to Mullikenm(l)2 should be a substantial component
3. Discussion of the adiabatic transition dipole (eq 5). Quantum mechanical
electronic structure calculations are needed to accurately
Our description of the solvent effect on ET kinetics and determine the magnitude uﬁéz. Here we present only some
optical transitions in condensed phases is based on the Hamil-crude estimates.

tonian 4. In the framework of this model, the fluctuations of  The relative magnitudes of the two summands in the adiabatic
the diabatic electronic levels are controlled by the interaction transition dipole given by eq 5 can be estimated from the
of the diabatic solute dipole momentsy (diagonal matrix \jyliiken approximatiod? saying that for an arbitrary quantum

ele_men_ts of the_electric dipole operator) with the total (inertial operatorA its off-diagonal matrix element is expressed through
+ inertialess) field of the solvent. By the same token, the ine mean of the diagonal elements as follows

fluctuations of the ET matrix element are controlled by the

interaction of the diabatic transition dipote}? (off-diagonal A A A

matrix element of the electric dipole opera(ior) with the same (DolAIGL= (1l I2) (D1 A9, (B AlSD) - (40)
solvent field. The adiabatic exclusion of the inertialess elec- ) ) 2

tronic subsystem (according to eq 1) results in instantaneous NS relation predicts than,” is directed as the vectano; +
free energies and also renormalizes the ET matrix element. TheMo2 and we get
instantaneous free energies and the renormalized matrix element

both include two similar components: equilibrium solvation by (méz-i) Al
bound solvent electrons and nonequilibrium solvation by the V,Am, ‘
nuclear subsystem (cf. eqs 13 and 15). There is thus a !
significant self-consistency between the diagonal and off-
diagonal elements of the effective two-state “Hamiltonfdn”  and
built on E; and V1.

Instantaneous free energies and the renormalized ET matrix (méz.)“() Al
element (egs 13, 15, and 16) are then used to calculate the ET ‘ VA ‘
rate constant (section 2.2), radiative rates (section 2.3), and to 128y
get absorption intensities (section 3.2 below). The major
difference between our results presented in sections 2.2 and 2.3vhere ¢ is the angle betweemg; andmg,. From eq 41 we

whereA7g is the Stokes shift and the assumption— vo| <
7o is used in the second line in eq 38. Since the oscillator
strengthF2 is related to the transition moment

(¥ is in cnT! and M is in debyes), the corresponding
modification of eq 38 in terms of oscillator strengths is
straightforward.

Al M, — MGy

I, +1, (Amo)z

(41)

Al 2MyMy, Sinco‘
L+, (AmO)Z

(42)
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come directly to the parametérof eq 22 5) that is 6 times higher § = 1.6 for C153) than in the
Mulliken—Hush approximation (eq 39). We can thus simplify
0 Al + AESsP mgz — mgl the equation for the rate constant preexponent as follows
=1- _
M
b+l (Amyy? A= 0PAy,

4m€2 m(zn sing L . .
— (1) (43) where@ is given by eq 23. Note also that in C153 the optical
(Amg(l; + 1) transition occurs from the deep grousd state. Many ET
systems are experimentally prepared by photoexcitation of either
where the subscript “M” stands for the Mulliken approximation. donor or acceptor moietiéd?3442 |n those cases, the portion

In the Mulliken schemel; are the energies of two localized  of m!2in the adiabatic transition dipole is expected to be even

electronic states measured from the ionization lirhit (—Pl;, more substantial.

where P| and P} are the ionization potentials of 4D0ban¢A A procedure called a generalized Mullikerlush approach
respectively, in the doneracceptor complex BA).*** The has been recently proposed by Cave and Nef#ténto
Mulliken approximation hence predicts that the contribution of o\ arcome the difficulty of nonzerconéz and to provide an

; 12 ; ; i ; 12

the direct overlapny’, to the adiabatic transition dipolé, unambiguous connection between adiabatic and nonadiabatic
Vi2Amy/Al, with deepening the electronic levels of the donor transformation of the diabatic basfspy, ¢} — {¢a ¢}

and acceptor moieties. Similarly, deepening of the donor and (explicitly given by eqs A6 and A7) that diagonalizes the dipole

acceptor electronic levels decreases the impact of solvation onmeoment matrix. In the bas{a, g1}, the two-state Hamiltonian
the tunneling probability leading, in the limjti/Al] — o, to 4 transforms to

the standard eq 20 for the rate constant preexponent. A

physically similar picture follows from the RedHopfield H, = z (I, — my+(E, + B)) b'b, +

model?® where the dependence of the electronic coupling on i%5h ' P t

the energy of the localized state has been taken into account. _ mab, + +

The difference between optical and thermal ET matrix elements (Vap = Mo (B + Be)) (b b, b2 b)) (44)
is scaled a$Al/l 4| in the Redi-Hopfield theory analogously to
our result 43.

It is interesting to estimate the impact of different terms in
adiabatic transition dipole (eq 5) and the rate constant preex-
ponent (eq 21). We do it here for the coumarin-153 (C153)
dye as an example. For C153, we hamg = 6.55 D, my; = A 12
15 D2 = 10.4,41%|, = —8.5 eV, and, = 5.2 eV¥1c The meb= m22o oy Mo
ratios 41 and 42 are equal to, respectively, 0.60 and 0.12. In 0 o AMy, °AM,
order to get the FranekCondon factorS, and the transverse
solvation terms (the last summand in eq 43 and the second termivhere
in the brackets in eq 21) we need the response functipasd 5 ) 122 5 122
te. We estimate them from the dielectric continuum relations AM1, = AM” + 4(M;)" = Amg, + 4(my) (45)

8 and 9 withRy = 4 A, e = 30, ande., = 2. Withhws=5 eV o _ _
this givesS = 0.03. The term in the brackets in eq 21 reads and AM is given by eq A4 in the Appendix. When

where b and b now denote the creation and annihilation
operators in the diabatic statesandb with the energie$, (eq
A8) andly (eq A9) specified in the appendix. The off-diagonal
matrix elemenm?” reads

in the Mulliken approximation as (m$2-2)= 0, mgb is identically zero and the adiabatic transition
dipole
|V120i|2 +287 :“pl(méz')m2 = Vy,
“1 |2MoaMy, Sing) 2 M3 =AM~
Viol?| 0% + 28 1#p A A
(I, + 1)Am, .y ,
is directly connected to the ET matrix element
The second summand here is equal ta& 2075 for C153 and 1
the last summand in eq 43 amounts to<81073. Both are V. =V Amy, Al My 46
negligible compared to other contributions, and for the parameter ab ™ 2AM,, AM,, (46)

0w we have AEYsP =~ Q) 9y = 1.6. Also, since the ratio 42 is

small, the adiabatic transition dipole obtained from the exact The advantage of using the transformati@n,¢.} — {¢a.dn}
relation 5 is given by the product 6fand the adiabatic transition s that it makes exact the MullikerHush connection between

dipole in the Mulliker-Hush approximation the transition dipole and the ET matrix element and yields
" " diabatic quantities slowly varying with nuclear coordings.
My~ = OMy,, However, for the complete description of the ET problem, we

need the nonadiabatic rate constant derived through the pertur-
where M2, refers to the vacuum transition dipole in eq 39 bation expansion in terms of the hopping Hamiltonian in eq
with hcy; = AJ. The estimates performed here enable us to 44. The derivation is the same as that carried out in section
draw several important conclusions: (i) the Fran€ondon 2.2. It even simplifies when the transition dipof%b is zero.
factorS; and the second term in brackets in eq 21 are both small Since the hopping Hamiltonian does not depend on the solvent
and can be omitted, (ii) the ET rate constant differs substantially field in this case, the preexponential factor of the rate constant
(2.6 times higher for C153) from the traditional golden-rule is given by the usual expression 20 with, replaced byap.
expressions 19 and 20, (iii) the diabatic transition dipole makes The cost of preserving the simple connection to the transition
a significant contribution to the adiabatic transition dipole (eq dipole and the traditional form of the rate constant preexponent
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is the complicated form of the activation barrier which now
loses the appealing physical clarity it had in the bésis ¢-}.
The vertical energy gapF; entering the activation barrier in
eq 19 becomes

12
Mo
+ 2V12m12 -

(e + ) AM (Mg, + Myy) £ 4,

Amy,
AM,,

AF, = Al

with

Ay = AN + 4(mg))7]

The solvent reorganization energy is no longer the solvation
energy of the differential solute dipole by inertial solvent modes
and involves now the transition dipole. Also induction forces
(proportional to m(z,i) and dispersion interactions (given in
terms of méz) are now entangled in a nontrivial way in the
vertical energy gap. The two descriptions in terms of Hamil-
toniansHo andHo might be equivalent mathematically (within
the range of applicability of the perturbation expansion different
for the two Hamiltonians). We however prefer that in terms of
the HamiltoniarHy, since it preserves the representation of the
ET energetics in terms of fundamental interaction potentials:
inductions, dispersions, and dipolar interactions. There is
obviously nothing fundamental in the particular form 20 of the
rate constant preexponential factor and we sacrifice it in favor
of the physical clarity of the barrier thermodynamics. In fact,
as we see below, the MullikerHush connection between the
transition dipole and ET matrix element remains exact when
the effective matrix elemertipa instead ofVi, is used and, in
turn, Hpa has a simple connection ¥y,

Before proceeding to the analysis of transition dipoles we
first summarize our findings concerning nonradiative transi-
tions: (1) The renormalization of the ET matrix element by

the equilibrium field of solvent electrons and the instantaneous

field of the nuclear subsystem result in a new form of the

J. Phys. Chem. A, Vol. 102, No. 26, 1998035

of “intensity borrowing” due to coupling of the CT states to a
localized excited state of either donor or acceptor. In the Murrell
scheme, both the solvent dependencebd¥3v, and curved
kraa VS 72 were attributed to the change of the strength of
coupling to locally excited states caused by the variation of the
vertical energy gap,. Eventually, the Murrell scheme became
prevailing in treating transition dipol&42b.430.c4%Ithough no
detailed studies of the effect afy’ have been conducted.
Here we try to analyze the Mulliken and Murrell concepts in
the framework of our derivation in section 2.3.

Our basic results concerning the solvent and transition energy
dependences of the transition dipole are given by egs 36 and
37. From eq 37 we get

(D)7 = TAM™) 2 + 7,(M3D)

This means that any curvature of tkgy vs v, plot is produced
in the two-state model by the transverse compongRf)(. In
CT complexes with long-distance charge relocalizat'rufﬁ is
expected to be directed alongmg*’ and the transverse
component should be small. Therefore, even for nonzero
mg’, the condition K115 = 0 implies that the Mulliker-Hush
dependencd,qg O 7, must hold. The naive expectation that
the linear trendkaq O ¥, should break down whed?3 =
M’ — AmgVidhov, is substituted into eq 34 is therefore
incorrect. The reason is the dependence of the effective ET
matrix element on the solvent equilibrium field. The spectral
shift due to the solvent permanent dipoles and induction forces
cancels out in the equilibrium transition dipole given in eq 35
and the product of its longitudinal component and the transition
frequency varies with solvent only through the dispersion shift
AEYSP (eq 36). AEYsP does not directly correlate with solvent
polarity, and thereforeAE9sP is not expected to result in any
particular variation of the transition dipole with increasing
dipolar strength of the solvent. FRKEYSYAI| < 1 the solvent
dependence vanishes altogether.

We can thus draw two important qualitative conclusions valid
for the two-state solute withM*9; = 0: (i) the radiative rate

preexponential factor of the nonadiabatic ET rate constant (eqconstant is proportional to the transition energy and (ii) the
21). (2) The deviation of the new preexponent from the well- product of the transition dipole and the transition frequency is
known expression 20 is controlled by the magnitude and jhyariant of the solvent. Consequently, a nonlinear dependence
orientation of the diabatic transition dipoﬂraé2 relative to the of kg ON 7, and/or a noticeable variation o623 with
differential solute dipoleAmo. (3) When the projection of  solvent indicates that the Murrell mechanism of “intensity
mg’ transverse taAmo and the parametef (eq 23) are both  borrowing” is in order. In fact, for all the data on transition
zero, the transferred electron is localized at the donor or acceptordipoles in different solvents we found in the literaté#e43there
sites, since the ET rate constant is zero. The transverse solvationis a pronounced (and usually linear) dependence.fl*2[3
term (the second summand in brackets in eq 21) is small andon the transition frequency. This may indicate that in real
the ET rate is substantially diminished when ofly= 0. systems the effect on transition dipoles of mixing of CT states
3.2. Transition Moments from Emission Lifetimes. In the with localized excited states is substantial or even domiffant.
two-state Mulliken-Hush formula (eq 39), the transition dipole We however need to stress that both manifestations of the
is inversely proportional to the transition frequency &ndis Murrell intensity borrowing mechanism, curvaturekpfy vs v,
approximately (neglecting the difference betwe@ﬁi;l\, and and the solvent dependence wfM*?3, also follow from a
@,[E) linear in 7, (substitute eq 39 into eq 34). Several nonzero {19y component. For most ET systems the Franck
observations proved to conflict with the two-state Mulliken ~ Condon factoiS; of electronic polarizability is very small and
Hush picture: (i) plots ok:aq VS ¥, are often curved?aP (ii) eq 37 predicts a linear variation of,(M23)2 with #5. In
products of transition dipoles from eq 34 and corresponding Figure 1 we plotted this dependence using recent experimental
transition frequencies may depend on the sol¢&rtnd (iii) data of Kapturkiewicz and Herbicl¢ A fairly good linear
ET matrix elements obtained by combining eqs 34 and 39 are correlation is actually seen. Moreover, the plot of f112{]?
sometimes unphysically high. — [Va23)2 vs (17% — 172) shown in the lower part in Figure 1
Two explanations of the disagreement between the Mulliken  is linear too, in accord with eq 38. Nevertheless, a coupling to
Hush theory and experiment have been proposed in the literatureexcited states might produce the same types of correlations and
As we have alluded to above, the Mulliken explanation was it seems impossible to distinguish between the two mechanisms
that it is méz that is nonnegligible and eq 5 instead of eq 39 without additional data. The information lacking in all mea-
should be used. Murréfi*>advanced an alternative mechanism surements of the solvent dependence of transition dipoles is the
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e ; ' ' " ' of the vacuum values of the transition frequency and transition
S & dipole is related to the same product in the liquid as follows
£ TMy” = exp(=1,S) 7'
o
42 Since&: is usually much less then unity, eq 48 gives a simple
§ 0 . L recipe for calculating the transition dipole in condensed phases
02 03 04 05 from its vacuum value
v,2/10° cm!
e ’ M= MPI(L+ Av/vy), AV, =, — 7,
£
§ L Also eq 48 can be rewritten as
=
N hepgM22
ool IHnal = 070 (49)
o DA
3 A
R Y E— 03 0.4 This is an important result indicating that the ET matrix element
(2= v, 2109 cm”! Hpa in condensed phases can be obtained from the vacuum
2

] _ - adiabatic transition dipole and the vacuum transition frequency.
Figure 1. Solvent polarity dependence of the transition moment

To be precise, we list the assumptions underlying eq 49: (i
according to the data by Kapturkiewicz and Herlsi#tiThe upper panel . P lli ith . 12,0 p_ 0 d (iii yAlgdiS;Al @
corresponds to emission data in different solvents (points). The lower o1 IS collinéar withMoy, ,(") (,mO %) =0, and (iii) | - |,
part gives the differencé(IM2@)2 = (IM2Gw1)2 — (IM1230,)2 vs the < 1. Equation 49 also implies that we can establish a simple

difference of squared wavenumbers for absorption and emission. Therelation betweeidpa and the ET matrix elemeiy, calculated
solid lines represent regressions drawn through the experimental pointsby the method of Cave and New3he (eq 46)

angle betweemj* andAmy (or, at least, M9)). Knowledge L AMy,
of the relative orientation of the two vectors would enable one IHpal = exp(=7,3) lead (50)
to discriminate between the Murrell mechanism and the two-
state formulation by using eqs 337.

The analysis of radiative lifetimes yields adiabatic CT
transition dipoles. It does not, however, provide a procedure

Hpa is also connected to the extinction coefficieft) for
absorption. Since an exact expressiondpr) is available in
. o - T terms of our model, we present it here for completene$s)
for ﬂspllttlng the moment (M*?j into its my" and can be obtained by using the Einstein relations between the
(V53 [/hcrz) Amg components, according to eq 35. However, apsorption and emission ratésand ka(7) defined in eq 27.

for nonadiabatic ET, we actually do not neég itself. Indeed, This yields

for (m;>%) = 0, only the producV:2f and notV;, alone enters

the rate constant preexponent as the ET matrix element (eq 21). e(v) 8n3NAf(em) )
In fact for (mg™%) = O we can recover the traditional form of - 3000 In(10%e.. IM(v)|
the nonadiabatic rate constant (eqs 19 and 20) just by replacing “

V12 in eq 20 by the effective condensed phase value HereNa is the Avogadro number and

_ 1 _
[Hpal = exp(="71,8) V0| = , IM(v)[* =

eXp(_l/ZSP) FT]O(AI + AEdiSp) _ Vlz FC(AF]_ - hV)

where FCAE) is given by eq 19 in our model and is easily
generalized to include intramolecular quantum vibrati&éP

(47)

H 2
An (h)'z + (M2 (1 + 22/B(w))

This ET matrix element is connected to the longitudinal
projection of the condensed phase transition dipole by the

expression The effective ET matrix elemeiip, is, according to eq 47,
hCl_/-(M-lz) a complex function of both the e.Iectronic overlap
IHpal = A LA (mg? and Vi2 ) and the solvent (throughE“sP). Notice that
My Hpa and hence the rate constant preexponent depends on the

vacuum energy gap\l. Since rn(l)2 and Vi, also contain a
generally unknown dependence am,*%? we will not address
TN this point here. As an illustration of the complicated nature of
hey M (48) Hpa, we plotted in Figure 2 (upper part, curve 1) the dependence
Am, of Hpa on the interatomic distance in the LiF diatomic molecule
in vacuum representing perhaps one of the simplest ET systems.
recovering the Mulliker-Hush relation that now becomes exact. Hp, is obtained according to eq 49 from the quantum-
We therefore do not need to spli*?] into the diabatic ~ mechanical calculations by Werner and Me$fér.The matrix

When M9 = (mg*KX) = 0, we have the formula

[Hpal =

transition dipolerr%2 and the vacuum ET matrix eleme¥i; element V| that is also shown in Figure 2 (upper panel, curve

parts and we can get the effective ET matrix element directly 2) is slightly smaller thanHpa| as expected from eqgs 45 and

from the transition dipole according to eq 48. 50. As is seen from Figure 2, only at large separations does
When the dispersion component of the spectral ks Hpa decay exponentially with distance, as is usually assumed.

is small compared tal, our treatment predicts that the product At distances close to the equilibrium separation in the LiF
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>i° o Appendix
s Here we derive eq 5 for the transition moment in the adiabatic
T 0.0 L basisW,, ¥, diagonalizing the vacuum two-state Hamiltonian.
3 The basigV; is formed by the linear combination of the diabatic
-0.2 wavefunctionsp; which, following Lu et al.4° we will write in
terms of the CT fractiori
B T W, =1 - fg, — signy,,) vig, (A1)
I iF ] .
se20 | LF- W, = sign(V,,)vip, + vV1—fp,
o 39251 | . where
L | R
39030 F | s f:l_ﬂ A= JAIZ+ 4|V, 2 A2
] 2 ZA\], ‘] | 12| ( )
3ol M L L1 . . .
2 4 6 8 10 and sign¥i2) in eq Al appears as a result of the convention
A V(1—1) = [V12/AJ, AJ > 0. The adiabatic transition dipole

Figure 2. The effective ET matrix elements (I)pa| and (2)|Vap vs

the interatomic distance in the LiF diatomic molecule (upper panel).
|[Hpa| is obtained according to eq 49 from the calculations by Werner . ) o
and Meye#:2 for the two lowest=* states of LiF shown in the lower IS the off-diagonal matrix element of the electric dipole moment

panel. The dashed lines indicate the ET localization point. operator of the solute in the adiabatic basis A1. From egs Al

) A3 we get
moleculeHpa passes through a maximum and then goes through

zero at a smaller distance. The latter behavior is a prediction 2 1 Al NV

of the present theory and the poiHtx = O corresponds to AM =Mg" = Mg' = Amg + mp™—5= - (A4)
localization of the transferred electron. In the lower part in
Figure 2 we give adiabatic electronic terms of the ground and
excited state’d? in order to show that in LiF localization occurs
in the repulsive region of the intermolecular potential. We stress
here again that localization happens only in the first order  Equations A4 and A5 give the adiabatic differential and
perturbation expansion for the rate constant. Higher order transition dipoles in terms of diabatic parameters. The problem

Mg = [W,|rhg| W00 (A3)

v
M3 = mi2L = Amg 2 (A5)

contributions usually appearing in quantum mechanical calculations is to get
) ) the inverse solution: to determine diabatic parameters from
kna U Z|HA(1| [Hopl known adiabatic one®. This task cannot be solved in the
a general case, because it demands determination of six diabatic
may be nonzero, but the rate constant should be substantiallyparameters

diminished atHpa = 0. 12
Finally, we comment on the dependence of the ET rate 1 12 Viz Moy, Moz M

constant on the orientation of the diabatic transition dipole

mg>. It seems that the description developed in the present

paper may be applicable to many CT systems. CT states are 3o 3. M M2 M2

often created by optical excitation of the donor or acceptor b2 o o o

moieties with a dipole moment of a photoexcited moiety oriented The trick used to overcome this difficulty is to reduce the

nonparallel to the direction of CT. In such case%” and  number of diabatic dipole moments by using a linear transfor-

Amg are noncolinear leading to the type of solvent dependence mation of the diabatic basispy,¢s} — {padn} diagonalizing

of the adiabatic transition moment discussed above. Changingthe dipole moment matri3¢ The transformation of the basis

the orientation ofm(l)2 relative to Amo opens an additional  resulting in[e,|o|¢,= O can be explicitly written as follows
degree of freedom influencing the ET rate. Some optical (méZ > 0)

chromophores indeed show strong sensitivity of the orientation

from five adiabatic quantities

of their transition dipoles to conformatiofs. It might be o= 1—gp, — Voo, (AB)
interesting to look at the dependence of the transition moment 2
orientation on the twisting angle in twisted ET systems where

9an9 y $o =0, + V1 - go, (A7)

ET is suppressed at the out-off-plane orientation of the donor
and acceptor subunit®® Note also that rotation ofmng’

. . . . where
relative to Amg may be used in creating molecular switches.
12
Acknowledgment. We are indebted to Prof. G. Kéer for g= 1_ Mo
providing us with unpublished calculations on 7-aminocou- 2 AMy,
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