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In this paper we explore the non-Condon effect of fluctuations of the tunneling matrix element caused by a
condensed medium on the rates of nonadiabatic electron transfer (ET) and spontaneous emission from an
excited electronic state. For a charge-transfer complex immersed in a polar polarizable liquid, the solvent
effect renormalizes the ET matrix element due to (i) the instantaneous field of the solvent nuclear polarization
and (ii) equilibrium solvation by the electronic solvent polarization. Fluctuations of the classical electric
field of the solvent affect the form of the preexponential factor in the ET rate constant. In the new expression
for the rate preexponent the vacuum ET matrix element is multiplied by the factorθ forming an effective ET
matrix element in condensed phases. The parameterθ is controlled by the magnitude and orientation (relative
to the differential solute dipole) of the diabatic transition dipole of the charge-transfer complex. The theory
predicts a possibility of localization of the transferred electron whenθ becomes equal to zero. The same
treatment is applied to the rate of spontaneous radiative electronic transitions. We find that the product of
the transition frequency and the adiabatic transition dipole is invariant in all solvents when (i) the diabatic
transition dipole is collinear to the differential solute dipole moment and (ii) the spectral shift due to dispersion
solvation is small. Under the same conditions, the adiabatic transition dipole in condensed phases and the
effective ET matrix element are related by the Mulliken-Hush equation that becomes exact in our treatment.

1. Introduction

Electron transfer (ET) proceeds as quantum tunneling between
two electronic states localized at the donor and acceptor sites.
A condensed environment solvates the donor and acceptor
resulting in two major effects: (i) the energy levels shift relative
to each other and (ii) the tunneling probability is modified by
the medium field resulting in the solvent dependence of the ET
matrix element. The present paper is concerned with the latter
focusing on the effect of electronic solvation and nuclear
fluctuations on the ET matrix element and on the rates of
radiationless and optical transitions. We provide a unified
description of these two phenomena resulting in explicit relations
between optical parameters and thermal activation properties.

The condition of tunneling in a quantum system is the equality
of two eigenvalues of the system Hamiltonian. When a
thermally fluctuating nuclear subsystem is involved, this
requirement is usually formulated in terms of the Born-
Oppenheimer (BO) decoupling ansatz leading to the condition
of resonance between two electronic termsEi

BO({Qj}), i ) 1, 2
at the same nuclear configuration{Qj}: E1

BO({Qj}) )
E2

BO({Qj}). Yet it does not provide the whole picture when the
electronic subsystem of the solvent is included. The electric
field of the transferred electron polarizes electronic shells of
the solvent molecules creating electronic polarization in the
solvent. The latter affects back the electron localized at the
donor and acceptor sites shifting the corresponding electronic
energies. Because of the self-consistent character of this
solvation effect, the calculation of electronic energies becomes
a nontrivial problem.1-4 The problem simplifies when the
bound solvent electrons are much faster than the transferred
electron.5 This implies that the frequencyωs of the electronic

excitations of the solvent is much higher than the frequencyω0

associated with the vacuum adiabatic energy gap∆J ) pω0

between the donor and acceptor electronic states. In this case,
the transferred electron, like a small molecular polaron, is
“dressed” by the equilibrium field of the solvent bound electrons
that adiabatically follow the redistribution of the electronic
density between the two states. In order to include equilibrium
solvation by the solvent electrons the BO surfaces should be
replaced by the (partial)free energies

obtained by averaging the system density matrix exp[-âHi] over
the solvent electronic degrees of freedom. In eq 1, Tr{el} is the
trace over the electronic subsystem of the solvent,Hi is the
diabatic Hamiltonian of the solute and the solvent, andâ )
1/(kBT).6 Electronic transitions thus proceed between the
diabatic statesEi({Qj}) as a result of nuclear fluctuations leading
to the resonance conditionE1({Qj}) ) E2({Qj}).

This scheme is realized under the requirement of timescale
separation

whereωn is the characteristic frequency of the nuclear modes.
[For a continuum spectrum of nuclear modes, the upper cut-off
frequency should be considered asωn]. For nonadiabatic ET,
this picture naturally leads to the golden-rule expression for the
rate constant.7 Yet, before writing it down, we turn our attention
to the physical concept of how the medium affects the electronic
subsystem.

The solvation effect of the condensed medium on the ET
system is commonly associated with the interaction of the solute
charge distribution with the solvent fieldE. For a dipolar solute,
the solute-solvent interaction term in the electronic Hamiltonian

† From June 1, 1998: Department of Chemistry, University of Utah,
Salt Lake City, Utah 84112.

exp[-âEi({Qj})] ) Tr{el}(exp[-âHi]) (1)

ωn , ω0 , ωs (2)
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reads

wherem̂0 is the solute electric dipole operator. [Note thatm̂0

need not be a point dipole.] The diagonal matrix elements of
the electronic Hamiltonian yield the electronic energy levels.
These energies are shifted from their vacuum values due to the
diagonal solvation terms-m0i‚E, wherem0i is the solute dipole
moment representing the solute charge distribution in theith
state,i)1, 2. Fluctuations of the medium field eventually result
in the resonance of the two localized states at which electronic
transition may occur. Further, the off-diagonal matrix elements
of the electronic Hamiltonian give us the ET matrix elements.
The off-diagonal matrix element of the electronic Hamiltonian
contains also the off-diagonal solvation term

wherem0
12 is the transition dipole. As a result, the ET matrix

element will depend on the fluctuating solvent field and, hence,
will fluctuate itself. Of course, the off-diagonal matrix element
-m0

12‚E is small compared to the diagonal one,-m0i‚E.
However, in the same way, the ET matrix element is small
compared to the electronic energies for nonadiabatic transitions.
One might expect that the relative effect of the off-diagonal
solvation term on the ET matrix element is of the same order
as the effect of the diagonal solvation term on the electronic
energy levels. The goal of this paper is to quantify this effect.
As we show below, a condensed medium really modifies
substantially the preexponential factor of the nonradiative (ET)
rate constant and the adiabatic transition dipole of the radiative
transition. The two quantities turn out to be connected by an
analog of the Mulliken-Hush relation that becomes exact when
the solvent effect is correctly taken into account for both
quantities.

The dependence of the ET matrix element on the nuclear
subsystem in usually neglected in the Condon approximation
fixing the ET matrix elements at a constant set of solvent nuclear
coordinates. In this terminology, our desire here is to examine
non-Condon effects due to fluctuations of the ET matrix element
produced by the fluctuating classical electric field of the
condensed medium. We do not consider here the coupling of
the ET matrix element to quantum skeletal vibrations of the
solute usually related to corrections to the Condon
approximation.8a,b We will also assume the stationary limit in
which the homogeneous broadeningpωn is much lower than
the inhomogeneous broadeningσ usually connected to the ET
classical reorganization energyλcl by the relation:σ2 ) 2λclkBT.
Therefore, the dynamical corrections to the Condon approxi-
mation8c-e are not considered here.

The preceding is intended to clarify the basic physics
employed in the present paper. In fact, as we will see below,
the effect of the condensed medium on the ET matrix element
is more complex and is determined by two major factors: (i)
instantaneous field of the solvent nuclear subsystem modifying
the tunneling barrier2,4b-d and (ii) equilibrium solvation by the
solvent electronic polarization reducing the tunneling probability
by a Franck-Condon factor.1a,2d,4f,9 Because of the first
component, the ET matrix elementṼ12({Qj}) depends on the
solvent nuclear configuration and the nonadiabatic rate constant
reads

In eq 3,

and integration runs over the configurations ofN solvent
molecules. The superscripti in the rate constantkET

(i) refers to
the equilibrium distribution over which the averaging〈...〉i is
performed;i)1 for the forward (1f 2) reaction andi ) 2 for
backward (2f 1) ET. Equation 3 is of course a well-known
one differing from the classical Levich theory7 only through
the dependence of the ET matrix element on the solvent
configuration.

The rate constant given by eq 3 will form the basis for our
development in section 2.2 below. The explicit dependence of
|Ṽ12({Qj})| on the nuclear configuration will be given in section
2.1 in terms of a two-state solute model. Two-state models (or
the equivalent description in terms of the spin-boson Hamil-
tonian) have been widely used in ET1d,e,2d,3 and optical
spectroscopy10-14 applications. The two-state description is
easily extended to an arbitrary number of solute electronic
states15 and, in fact, the nonadiabatic ET rate constant derived
in section 2.2 is not restricted to two states. The time-separation
requirement given by eq 2 usually forms the basis for construct-
ing theories of nonadiabatic ET. Our development will be more
general. The nonadiabatic rate constant is derived in section
2.2 for an arbitrary ratio of the solute and solvent characteristic
frequenciesω0 and ωs, under the only requirement that they
are quantum frequencies much higher than the classical fre-
quencyωn

We will show that the only consequence of removing the
restriction ω0 , ωs is the renormalization of the ET matrix
element in the form of the Franck-Condon factor of shifted
oscillators associated with the solvent electronic polarization.

The problem closely related to the solvent renormalization
of the ET matrix element is the controversial question of the
solvent dependence of the transition dipole of optical transitions.
We address this point in section 2.3, where we derive expres-
sions for transition dipoles and emission lifetimes. Finally, our
results are summarized in section 3 where we show that a unified
treatment of nonadiabatic ET reactions and optical transitions
is possible in terms of an effective ET matrix element and the
equilibrium adiabatic transition dipole.

2. Nonradiative and Radiative Rates

2.1. Two-Level Solute. Descriptions of intramolecular ET
and optical transitions are essentially isomorphic.16-18 We
therefore use here a formulation applicable to both problems.
The solute is considered to possess a dipole momentm01 in the
initial state changing tom02 with electronic transition (the
subscript “0” throughout below refers to the solute). The
Hamiltonian of the two-state solute immersed in a polar
polarizable liquid can be written as18

-m̂0‚E

-m0
12‚E

kET
(i) ) (2π/p)〈|Ṽ12({Qj})|2δ(∆E({Qj}))〉i (3)

∆E({Qj}) ) E2({Qj}) - E1({Qj})

〈...〉i ) Zi
-1∫ ...exp[-âEi({Qj})] dΓ

Zi ) ∫ exp[-âEi({Qj})] dΓ, dΓ ) dQ1...dQN

ωn , ω0 ωn , ωs

H0 ) ∑
i)1

2

[Ii - m0i‚(Ep + Ee)] ai
+ ai +

[V12 - m0
12‚(Ep + Ee)](a1

+a2 + a2
+a1) (4)
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Here,ai
+ andai are the creation and annihilation operators in

the ith state with the diabatic vacuum energyIi shifted by the
interaction of the diabatic solute dipolem0i with the instanta-
neous fields of the molecular fixed,Ep, and induced,Ee, charges.
Similarly, the vacuum ET matrix elementV12 is affected by the
solvent field due to a nonzero diabatic transition dipole moment
m0

12.
The transition momentm0

12 is the off-diagonal matrix ele-
ment m0

12 ) 〈æ1|m̂0|æ2〉 of the solute electric dipole moment
operatorm̂0 taken in the vacuum diabatic basis{æ1, æ2}. In a
broad sense, the orientation ofm0

12 is not totally defined, since
the transformationæi f -æi, which does not affect observables,
reverses the direction of the transition dipolem0

12 f -m0
12.

However, the same transformation switches also the sign ofV12.
The sign of the ET matrix element by itself does not have any
physical meaning (although it does make sense to think of a
sign switch with, for example, the nature of the donor-acceptor
bridge19a,b or in a hopping sequence in a superexchange ET
pathway19c). Nevertheless, the combinationV12 - m0

12‚(Ep +
Ee) is meaningful, since bothV12 andm0

12 change in the same
way under the sign switchæi f -æi. In fact, as we will see
below, the observable quantities such as the ET rate constant
and the transition moment depend on the ratio of the projection
of m0

12 on the differential solute dipole andV12. This ratio is
invariant under the switchæi f -æi and hence the quantities
based on it are physically meaningful.

The diabatic transition dipolem0
12 should not be confused

with theadiabatictransition dipoleM0
12 that is usually consid-

ered in optical spectroscopy of charge transfer complexes.10,14

In the two-state model, the transition momentM0
12 is the off-

diagonal matrix element of the electric dipole operator taken
on adiabatic wave functions diagonalizing the vacuum solute
HamiltonianH0(Ep ) 0, Ee ) 0) (see the appendix)

Here,∆m0 ) m02 - m01 is the differential solute dipole and
∆J is the adiabatic vacuum energy gap

with “-” and “+” referring to i ) 1 andi ) 2, respectively.20

A linear transformation of the diabatic basis can be used to
diagonalize the diabatic dipole moment matrix leading tom0

12

) 0.21 Such a transformation complicates the two-state Hamil-
tonian 4 and we will not pursue this approach here (see section
3.1 below).

Now we need to specify the solvent HamiltonianHs.
Following Gehlen et al.,3 we give it in the form of two harmonic
collective modes,Ep andEe,

Since the fieldEp is a slow nuclear mode (according to the left
inequality in eq 2), we excluded a corresponding kinetic energy
term from eq 7 (BO decoupling). The kinetic energy is however
retained for the fast quantum modeEe.22

The response functionsµe andµp in eq 7 have been chosen
so that the equilibrium chemical potentials of solvation of the
dipole m0i by electronic and nuclear subsystems areµem0i

2 and

µpm0i
2 , respectively. In the continuum solvent description the

response functions for spherical solutes are given in terms of
the Onsager reaction field as

and

whereR0 is the cavity radius andε∞ and εs are, respectively,
the high-frequency and static dielectric constants of the solvent.

The potential energy term in eq 7 can be obtained from a
more general molecular-based Hamiltonian of the solvent bath
HB by projecting out the two collective modesEp andEe

The cumulant expansion in eq 10 truncated after the second
cumulant23 will result in the Hamiltonian 7. The details of the
molecular model and approximations used in averaging affect
only the definitions of the response functionsµp andµe. Once
these are specified, a molecular description will be equivalent
to that of eq 7.24

The whole system HamiltonianH ) H0 + Hs as given by
eqs 4 and 7 is equivalent to that of a molecular polaron, i.e., an
electron in either of two states coupled to an optical medium
phonon.1a,b The free energy of the molecular polaron can be
found under very general assumptions according to the following
procedure.1a,b First a canonical transformation exp[iL]H
exp[-iL] usual for polaron and exciton problems25 is applied
to the system HamiltonianH. The transformation withL ∝
(a1

+a1 - a2
+a2) Pe (Pe ) Ee/2µeωs

2 is the momentum conjugate
to Ee) removes the solute-solvent interaction term in the
HamiltonianH and changes the basis of the solvent from that
of a harmonic oscillator to a coherent state of a displaced
oscillator. Then the infinite order perturbation expansion over
the hopping Hamiltonian is used.1a This expansion can be
summed under the assumption of the quantum character of the
solvent electronic excitationsâpωs . 1. The instantaneousfree
energyEe of the two-state system equilibrated to the quantum
field Ee and depending on the nuclear configuration{Qj}
becomes1a

where

In eqs 11 and 12, the energy gap∆E ) E2 - E1 is between the
two diabatic energiesEi (eq 1) defined in our model (eqs 4 and
7), by the relation

Ei
np specifies the nonpolar potential arising as a result of

averaging over the electronic solvent polarization. It includes
the dispersion solute-solvent potentialEi

disp and the induction

M0
12 ) m0

12∆I
∆J

- ∆m0

V12

∆J
(5)

∆J ) J2 - J1, Ji ) 1
2
[I1 + I2 - x(I1 - I2)

2 + 4|V12|2] (6)

Hs ) 1
4µp

Ep
2 + 1

4µe
[Ee

2 + ωs
-2 Ee

2] ) U[Ep, Ee] + 1

4µeωs
2
Ëe

2

(7)

µe )
ε∞ - 1

2ε∞ + 1
1

R0
3

(8)

µp ) [ εs - 1

2εs + 1
-

ε∞ - 1

2ε∞ + 1] 1

R0
3

(9)

exp(-âU [Ep, Ee]) ) ∫δ[Ep({Qj}) - Ep] ×

δ [Ee({Qj}) - Ee]exp[-âHB] ∏
j)1

N

dQ̇j dQj (10)

Ee ) (E1 + E2)/2 - â-1ln[2cosh(â∆Ẽ/2)] (11)

∆Ẽ ) x∆E2 + 4|Ṽ12|2 (12)

Ei ) Ii - m0i‚Ep + Ei
np (13)
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free energyFi
e ) µem0i

2 of the interaction of the solvent-
induced dipoles with the solute permanent dipole

When the timescale separation 2 is used in calculating the
dispersion term, we getEdisp ) -µe|m0

12|2.18,26 This expression
is of the zeroth order in the ratioω0/ωs, ω0 ) ∆J/p neglecting
the retardation effects of solvation by the bound solvent
electrons.4b In this limit, Edisp is independent of the solute state
and ∆Edisp ) E2

disp - E1
disp is equal to zero. A more accurate

result can be obtained by implementing the Drude oscillator
model for the solute induced dipole18 or in the framework of
the quantum perturbation theory.27 Both approaches lead to the
London form of the dispersion potential depending on the solute
state even for a two-state solute. We discuss this in greater
detail elsewhere18 and now just label the dispersion potential
with the subscripti indicating the dependence on the solute state.

The renormalized ET matrix elementṼ12 in eq 12 includes
two physically different components. First, it is affected by
the instantaneous field of the permanent solvent dipoles and
equilibrium solvation by the induced dipoles18

wheremj 0 ) (m01 + m02)/2. Second, ET results in a displace-
ment of quantum oscillators representing molecular polarizabil-
ity. The ET matrix element acquires hence a Franck-Condon
factor of the displaced oscillators1,2d,4f,9,28

An expression analogous to eqs 15 and 16 has been obtained
by Kim and Hynes2d in terms of the diagonal and off-diagonal
matrix elements of the solute electric field interacting with
continuum solvent polarization.

The ET matrix element given by eqs 15 and 16 should be
substituted into eqs 11 and 12 to give the instantaneous free
energyEe for an arbitrary ratioω0/ωs not restricted to the time-
separation condition 2. The exponential factorSe renormalizing
V12

eff to Ṽ12 disappears in the limitωs f ∞ implying that the
only difference between the effect of an arbitrary quantum field
Ee and a field much faster than the solute electron (in terms of
eq 2) is the appearance of the renormalization factor
exp[-1/2Se] in the ET matrix element. This result, obtained first
for molecular polarons,1a has been recently rederived by Song
and Stuchebrukhov in application to ET.28 In their treatment,
the renormalization of the hopping matrix element is caused
by a continuum spectrum of solvent modes with frequencies
higher than a quantum cut-off frequencyωq

where J(ω) is the spectral density of harmonic oscillators
modeling the thermal bath. The cut-off frequencyωq has been
attributed in ref 28b to the effective frequency of quantum
skeletal vibrations of the solute instead of the electronic
excitation frequencyωs in the present formulation. As a result,
S′e becomes higher thanSe further lowering the effective ET
matrix element (“induced nonadiabaticity”28b). There is actually
no contradiction between the two descriptions. In the golden-

rule expression for the rate constant the transformation fromSe

to S′e is achieved by including the Franck-Condon factor of
skeletal solute vibrations resulting in an additional contribution
to the exponential renormalization inṼ12.

The transition from theωs cut-off frequency in our present
treatment toωq in ref 28 is a special case of the general rescaling
procedure adiabatically eliminating oscillators with high fre-
quencies by renormalizing the hopping matrix element.29 The
process may be continued to a finite renormalized hopping
matrix element withωq f 0. For subohmic,J(ω) ∝ ωs (s <
1), and, under additional conditions, ohmic,J(ω) ∝ ω, forms
of the spectral density the rescaling results in the phenomenon
of localization whenṼf0 with lowering temperature.29 In the
derivation presented in the next section we demonstrate a
possibility of localization at high temperatures whenV12

eff

passes through zero due to the solvation terms in eq 15.
The analysis performed above is easily generalized to a solute

with more than two electronic levelsi ) 1, ..., n.18 Equation
13 remains intact in this case and the effective matrix element
between the statesi and j becomes15,18

Therefore, the rate constant of nonadiabatic ET between the
statesi ) 1 andj ) 2 derived in the next section is not limited
to a two-state solute and is equally suited to solutes with an
arbitrary number of electronic states.

2.2. ET Rate Constant. Now we calculate the nonadiabatic
rate constant from the golden-rule expression 3 and eqs 13-
16. The averaging of theδ-function in eq 3 is performed by
using the common representation

Above we have projected out two solvent fieldsEp andEe from
the whole manifold of the system degrees of freedom and then
integrated overEe to get the diabatic free energies and the
renormalized ET matrix element. The averaging in eq 17 thus
reduces to that over the inertial30 field Ep

If we omit the solvent dependence ofṼ12 and putṼ12 ) V12,
eqs 3, 17, and 18 give the well-known7 expression for the
nonadiabatic ET rate

Here,λp ) µp∆m0
2 is the reorganization energy of the inertial

solvent polarization,

and∆Enp ) E2
np - E1

np is according to eq 14.
The energies∆Fi have a simple connection to optical

spectroscopy defining the wavenumbersνji of absorption (i )
1) and fluorescence (i ) 2) transitions shifted from the vacuum

Ei
np ) Ei

disp + Fi
e (14)

V12
eff ) V12 - m0

12‚Ep - 2µe(m0
12‚mj 0) (15)

Ṽ12 ) V12
eff exp[-1

2
Se], Se )

µe∆m0
2

pωs
(16)

S′e ) 2∫ωq

∞ J(ω)

ω2

dω
π

Vij
eff ) Vij - m0

ij‚Ep - 2µe(m0
ij‚mj 0)

〈|Ṽ12|2δ(∆E)〉i ) ∫-∞

∞
(dê/2π)〈|Ṽ12|2 exp[iê∆E]〉i (17)

〈f[Ep]〉i ) (â/4πµp)
1/2[-âµpm0i

2 ]∫f[Ep] exp [-(âEp
2/4µp) +

âm0i‚Ep] dEp (18)

kNA
(i) ) ANAFC(∆Fi), FC(∆Fi) ) exp[-â

∆Fi
2

4λp
] (19)

ANA )
|V12|2

p (πâ
λp

)1/2
(20)

∆Fi ) ∆I + ∆Enp - 2µp(∆m0‚m0i)
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gap hcνj0 ) ∆I by differential dispersion solvation31 hc∆νjdisp

) ∆Edisp and the effect of induced and permanent dipoles

where “-” and “+” refer to i ) 1 andi ) 2, respectively. The
total transition energy is thus

The Franck-Condon factor FC(∆Fi) in eq 19 is easily general-
ized to include quantum skeletal vibrations of the solute.32

When the ET matrix element 16 is used in eqs 3, 17, and 18,
we get a Gaussian integral over the inertial fieldEp. The
integration is straightforward resulting in the nonadiabatic rate
constant given by eq 19 where the preexponential factorANA

should now be replaced by the relation

The parameterθi in eq 21 determines the deviation of the
effective ET matrix element in condensed phases from the
vacuum valueV12. For general orientations of the ground and
excited state solute dipoles, it is given by the expression

with

Equation 22 simplifies for collinearm0i to33

In eqs 21-23, ẑ ) ∆m0/∆m0 andx̂ is a unit vector perpendicular
to ẑ in the plane formed by∆m0 andm0

12.
Equation 21 shows that two factors cause electronic transitions

when ∆m0 and m0
12 are not collinear: (i) tunneling coupling

with the strength|V12θi| between the diabatic states (the first
summand in the brackets in eq 21) and (ii) thermal fluctuations
(∝kBT) of the solvent polarization in the direction perpendicular
to thez-axis of redistribution the electronic density (the second
summand in the brackets in eq 21). The solvent effect on the
preexponential factor is controlled by two parameters:Se and
m0

12. Se is small for the usual ET conditions and may be
omitted in most cases.m0

12 is a vector and both the angle
between∆m0 and m0

12 and the magnitudem0
12 determine the

extent of deviation of the rate constant preexponential factor
from the prediction of eq 20: we recover eq 20 form0

12 ) 0.

If m0
12 is directed along thez-axis, we have (m0

12‚x̂) ) 0 and
eq 23 suggests an interesting phenomenon of self-localization
of the transferred electron whenθ ) 0. The condition for this
to occur is

Equation 24 can be rewritten in the two-state model using the
vacuum adiabatic transition dipole 5 yielding (∆Edisp is usually
negative23b)

In the case when the dispersion shift is negligeable (recall that
∆Edisp ) 0 for a two-state solute withω0 , ωs), the above
condition transforms toM0

12 ) 0 implying that self-localization
occurs when the vacuum adiabatic transition dipole is equal to
zero due to mutual cancellation of the two summands in eq 5.
As we show below, the passing of the adiabatic transition dipole
of LIF through zero as a function of internuclear separation
follows from the quantum mechanical calculations by Werner
and Meyer.21a This result indicates that|m0

12| and|∆m0V12/∆I|
(|V12/∆I| , 1) can indeed be close in magnitude in real charge-
transfer systems.

2.3. Radiative Rate and Transition Dipole. The influence
of the solvent field results in the renormalization of the ET
matrix element. Most experimental information about this
parameter is extracted nowadays from transition moments of
optical spectral lines. We therefore need to understand how
the solvent effects discussed above influence the observed
transition dipoles. We address this point here limiting our
consideration to the two-state solute model.

Since the landmark work of Mulliken,10 the radiative lifetimes
of emission states34 and oscillator strengths of absorption
transitions14 in charge transfer (CT) complexes are described
in terms of the adiabatic transition dipoleM0

12 (eq 5, see also
eq A3 in the appendix). Below we will improve upon the
classical results of the theory of spontaneous radiation rates in
vacuum by explicitely taking into account fluctuations of the
transition moment caused by the solvent thermal motions. The
main component of this derivation is the two-step renormal-
ization of the vacuum adiabatic transition dipole. Following
the procedure outlined in section 2.1, as the first step, we will
define the instantaneous transition dipoleM12 equilibrated to
the electronic subsystem of the solvent, but fluctuating with
nuclear solvent configurations. Next, we will average the
transition probability over the nuclear solvent fluctuations. The
radiative rate constant (eq 34) is then expressed through the
average 〈M12〉2 of the instantaneous dipoleM12 over the
equilibrium configuration of the solvent corresponding to the
solute excited state (i ) 2 ).

The definition of the instantaneous transition dipoleM12 is
straightforward in terms of the procedure outlined in section
2.1. A canonical transformation of the system HamiltonianHR

) exp[iL] H exp[-iL] changes the basis of harmonic oscillators
representing the solvent electronic polarization to a coherent
state of displaced harmonic oscillators. The average of the
system density matrix exp[-âHR] over the solvent electronic
subsystem yields the adiabatic ground stateEe (eq 11) built on
diabatic statesEi (eq 13) and the renormalized ET matrix
elementṼ12 (eqs 15 and 16). The diagonalization of the two-
state Hamiltonian composed ofEi as diagonal elements andṼ12

as off-diagonal elements gives the instantaneous adiabatic
transition dipole

where∆Ẽ is given by eq 12.M12 depends on the instantaneous
nuclear configuration of the solvent through the inertial field

hc∆νji
p ) -2µp(∆m0‚m0i) - ∆Fe

∆Fi ) hcνji ) hc[νj0 + ∆νjdisp + ∆νji
p]

Ai )
exp[-Se]

p (πâ
λp

)1/2
[|V12θi|2 + 2â-1µp|(m0

12‚x̂)|2] (21)

θi ) 1 -
(m0

12‚ẑ)

∆m0V12
(∆I + ∆Edisp) -

∆Ex,i

V12
(22)

∆Ex,i ) (m0
12‚x̂)(µe[x̂‚(m01 + m02)] + 2µp(m0i‚x̂))

θ ) 1-
(m0

12‚ẑ)

∆m0V12
(∆I + ∆Edisp) (23)

m0
12(∆I + ∆Edisp) ) ∆m0V12 (24)

M0
12∆I ) -m0

12∆Edisp

M12 ) exp(-1/2Se)[m0
12∆E

∆Ẽ
- ∆m0

V12
eff

∆Ẽ] (25)
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Ep entering∆Ẽ, ∆E, andV12
eff according to eqs 12, 13, and 15,

respectively.
Once we have the instantaneous adiabatic transition dipole,

we need to determine an observable quantity (ensemble average)
involving M12. The quantity usually available from experiment
and directly connected to the magnitude of the adiabatic
transition dipole is the rate of spontaneous emissionkrad that
can be written as34

where

In eq 27,νj is the wavenumber (in cm-1 ), 〈...〉2,V denotes an
ensemble average over the vibrational excitations of the solute
(V) and over the fluctuations of the inertial field (Ep (eq 18))
with the solute in the excited (i ) 2) state. f(ε∞) in eq 27 is a
function of the high-frequency dielectric constantε∞ of the
solvent. In the classical Strickler-Berg theory,35 f(ε∞) )
ε∞

3/2. When the vacuum electric field of incident light is
replaced by the local Lorentz field of the induced solvent
dipoles, one obtainsf(ε∞) ) xε∞[(ε∞ + 2)/3]2.36 Since other
forms off(ε∞) are also used in the literature,37 we will not specify
f(ε∞) in the derivation below.

From eqs 26 and 27 we have

The average overEp in eq 28 can be taken exactly if we replace
∆Ẽ by ∆E, which is a very good approximation for most optical
chromophores. This yields

The second summand (∝kBT) is of the order 1/â∆Fi of the first
one. For usual magnitudes of optical energy gaps∆Fi amount-
ing to several electron volts we can neglect the terms propor-
tional to kBT and write

Here 〈V12
eff〉2 is the ET matrix element corresponding to the

solvent configuration in equilibrium with the excited solute state.
For arbitrary orientations of the ground and excited solute dipole
moments we have

The two solvation terms in this equation are connected to the
optical spectral shift∆νji

p due to induction and dipolar solva-
tion when bothm01 andm02 are collinear and hence are oriented
alongz

The averaging over the vibronic envelope of the emission
band in eq 29 can be performed in terms of a single high-

frequency skeletal mode32 or using the vibronic profile of the
emission band obtained from experiment. The latter approach
was used in the Strickler-Berg theory35 and, following their
arguments, we come to the final expression for the radiative
rate constant

Here

andIf(νj) is the intensity of the fluorescence spectrum (in terms
of relative numbers of quanta at each frequency). If we neglect
the effect of redistribution of electronic density between the
two ET states on the transition dipole and put〈V12〉2 ) 0 in eq
32, we obtain the analogue of the radiative rate constant in the
Strickler-Berg theory35

which contains only the average frequency〈νj2
3〉av. The major-

ity of experimental emission rate data are treated according to
eq 33 and only〈νj2

3〉av is commonly available. Therefore, for
the theory-experiment comparison a simplification of the
general expression 32 is desirable. This is achieved by analogy
with eq 33

in terms of the adiabatic transition dipole at the equilibrium
solvent configuration

We denote the projections of〈M12〉i on the directionẑ of the
differential solute dipole and that perpendicular to itx̂ as
longitudinal, (Mi

12)|, and transverse, (M12)⊥, components (ẑ and
x̂ are defined after eq 23). The equilibrium transition moment
35 can be obtained from eq 30 for arbitrary orientations of the
solute dipole moments in the ground and excited states. Since
the equation is rather cumbersome, we give here the transition
dipole only for collinearm0i. In this case, eqs 31 and 35 yield38

and

Equation 35 suggests that, because of unequal transition
energies and equilibrium ET matrix elements for absorption and
emission, adiabatic transition moments are also unequal,〈M12〉1

krad )
32π3f(ε∞)

3p [(m0
12)2〈νj2

3〉av - 2(m0
12‚∆m0)〈νj2

2〉av

〈Ṽ12〉2

hc
+

∆m0
2〈νj2〉av (〈Ṽ12〉2

hc )2] (32)

〈νj2
n〉av )

∫νjn-3If(νj) dνj

∫νj-3If(νj) dνj

krad(νj) )
32π3f(ε∞)

3p
〈νj2

3〉av(m0
12)2 (33)

krad )
32π3f(ε∞)

3p
〈νj2

3〉av|〈M12〉2|2 (34)

〈M12〉i ) exp(-1/2Se)[m0
12 - ∆m0

〈V12
eff〉i

hcνji
] (35)

(M12)⊥ ) exp(-1/2Se) (m0
12‚x̂) (36)

hcνji(Mi
12)| ) exp(-1/2Se) [(m0

12‚ẑ)(∆I + ∆Edisp) - ∆m0V12]

[νji〈M
12〉i]

2 ) e-Se (νji
2(m0

12‚x̂)2 + [(m0
12‚ẑ)(νj0 + ∆νjdisp) -

∆m0V12/hc]2) (37)

krad ) ∫krad(νj)dνj (26)

krad(νj) )
64π4f(ε∞)c

3
νj3〈|M12|2 δ(hcνj - ∆Ẽ)〉2,V (27)

krad )
64π4f(ε∞)

3h4c3
〈|M12|2(∆Ẽ )3〉2,V (28)

〈|M12|2(∆E)3〉2 ) e-Se∆Fi[m0
12∆Fi - ∆m0〈V12

eff〉2]
2 +

{terms proportional tokBT}

krad )
32π3f(ε∞)

3p
e-Se〈νj2[m0

12νj2 - ∆m0〈V12
eff〉2/hc]2〉V (29)

〈V12
eff〉i ) V12 - 2µe(m0

12‚mj 0) - 2µp(m0
12‚m0i) (30)

〈V12
eff〉i ) V12 +

(m0
12‚ẑ)

∆m0
hc∆νji

p (31)
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* 〈M12〉2. This is in contrast to the conjugate relationM0
12)

(M0
21)* for the corresponding vacuum values. Note also that

from eq 36 the following inequalities hold

for positively solvatochromic dyes withm02 > m01, νj2 < νj1

and

for transitions withm02 < m01, νj2 > νj1.
Expressions 36 and 37 are the major results of the derivation

in this section. From eq 36 we learn that the product of the
longitudinal projection (Mi

12)| on the average transition fre-
quencyνji depends on the solvent only through the differential
dispersion term∆Edisp. Since∆Edisp is not directly related to
solvent polarity, a dependence ofνji〈M12〉i on solvent dipolar
strength, if it exists, is caused by a nonzero transverse projection
(M12)⊥. The latter can be found when transition dipoles are
known for both absorption and emission, since

where∆νjst is the Stokes shift and the assumption|νji - νj0| ,
νj0 is used in the second line in eq 38. Since the oscillator
strengthFi

12 is related to the transition moment

(νji is in cm-1 and 〈M12〉i is in debyes), the corresponding
modification of eq 38 in terms of oscillator strengths is
straightforward.

3. Discussion

Our description of the solvent effect on ET kinetics and
optical transitions in condensed phases is based on the Hamil-
tonian 4. In the framework of this model, the fluctuations of
the diabatic electronic levels are controlled by the interaction
of the diabatic solute dipole momentsm0i (diagonal matrix
elements of the electric dipole operator) with the total (inertial
+ inertialess) field of the solvent. By the same token, the
fluctuations of the ET matrix element are controlled by the
interaction of the diabatic transition dipolem0

12 (off-diagonal
matrix element of the electric dipole operator) with the same
solvent field. The adiabatic exclusion of the inertialess elec-
tronic subsystem (according to eq 1) results in instantaneous
free energies and also renormalizes the ET matrix element. The
instantaneous free energies and the renormalized matrix element
both include two similar components: equilibrium solvation by
bound solvent electrons and nonequilibrium solvation by the
nuclear subsystem (cf. eqs 13 and 15). There is thus a
significant self-consistency between the diagonal and off-
diagonal elements of the effective two-state “Hamiltonian”39

built on Ei and Ṽ12.
Instantaneous free energies and the renormalized ET matrix

element (eqs 13, 15, and 16) are then used to calculate the ET
rate constant (section 2.2), radiative rates (section 2.3), and to
get absorption intensities (section 3.2 below). The major
difference between our results presented in sections 2.2 and 2.3

and those from classical studies on nonadiabatic ET and CT
spectra7,11-14 is the new expressions for the rate constant
preexponent (eq 21) and the adiabatic transition dipole (eq 35).
The origin of the difference is the renormalization of the ET
matrix element which has not been accounted for in previous
studies. The key parameters of the renormalization are the
orientation (relative to the differential solute dipole moment)
and the magnitude of the diabatic transition dipolem0

12 which
we discuss next.

3.1. Diabatic Transition Dipole and ET Rate. The diabatic
transition dipolem0

12 is commonly neglected in the theories of
ET7 and spectroscopy of CT complexes.11-14,34 It is assumed
that optical CT transitions occur due to the adiabatic transition
dipole

that depends on the solvent only through the vertical transition
energyhcνji. Approximation 39 goes back to Mulliken (CT
spectra),10 Hush (intervalence transitions),11 and Hopfield.12 The
most thorough analysis of the accuracy of eq 39 belongs perhaps
to Mulliken,10 although Hopfield estimated the error of neglect-
ing of m0

12 amounting to 25% for long-range ET in biological
systems.12a According to Mulliken (ref 10, chapter 3.4), the
omission of the diabatic transition dipole can be justified only
for strong donor-acceptor complexes (large|V12|). For weak
complexes,m0

12 “might be large enough to give some consid-
erable intensity to the CT band”10 even when the charge
redistribution term|V12∆m0/hcνji| results in very little intensity.
The nonzero value ofm0

12 “may well often explain the rather
considerable intensities of CT absorption bands for weak
complexes”10 and high rates of spontaneous emission (see
below). It is therefore the case of weak coupling (small|V12|),
which is of major importance for ET applications, where,
according to Mulliken,m0

12 should be a substantial component
of the adiabatic transition dipole (eq 5). Quantum mechanical
electronic structure calculations are needed to accurately
determine the magnitude ofm0

12. Here we present only some
crude estimates.

The relative magnitudes of the two summands in the adiabatic
transition dipole given by eq 5 can be estimated from the
Mulliken approximation40 saying that for an arbitrary quantum
operatorÂ its off-diagonal matrix element is expressed through
the mean of the diagonal elements as follows

This relation predicts thatm0
12 is directed as the vectorm01 +

m02 and we get

and

whereæ is the angle betweenm01 and m02. From eq 41 we

〈MMH
12 〉i ) -∆m0

V12

hcνji
(39)

〈φ1|Â|φ2〉 ) (〈φ1|φ2〉/2)(〈φ1|Â|φ1〉 + 〈φ2|Â|φ2〉) (40)

|(m0
12‚ẑ) ∆I

V12∆m0
| ) | ∆I

I1 + I2

m02
2 - m01

2

(∆m0)
2 | (41)

|(m0
12‚x̂) ∆I

V12∆m0
| ) | ∆I

I1 + I2

2m01m02 sin æ

(∆m0)
2 | (42)

〈M12〉2 > 〈M12〉1

〈M12〉2 < 〈M12〉1

[νj1〈M
12〉1]

2 -[νj2〈M
12〉2]

2 ) e-Se(m0
12‚x̂)2(νj1

2 - νj2
2)

= 2(M12)⊥
2νj0∆νjst (38)

Fi
12 ) 0.47× 10-6νji〈M

12〉 i
2
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come directly to the parameterθ of eq 22

where the subscript “M” stands for the Mulliken approximation.
In the Mulliken scheme,Ii are the energies of two localized

electronic states measured from the ionization limit (Ii) -PIi,
where PI1 and PI2 are the ionization potentials of D and A-,
respectively, in the donor-acceptor complex D-A).40b The
Mulliken approximation hence predicts that the contribution of
the direct overlap,m0

12, to the adiabatic transition dipoleM0
12

decreases compared to the charge redistribution component,
V12∆m0/∆I, with deepening the electronic levels of the donor
and acceptor moieties. Similarly, deepening of the donor and
acceptor electronic levels decreases the impact of solvation on
the tunneling probability leading, in the limit|I1/∆I| f ∞, to
the standard eq 20 for the rate constant preexponent. A
physically similar picture follows from the Redi-Hopfield
model12b where the dependence of the electronic coupling on
the energy of the localized state has been taken into account.
The difference between optical and thermal ET matrix elements
is scaled as|∆I/I 1| in the Redi-Hopfield theory analogously to
our result 43.

It is interesting to estimate the impact of different terms in
adiabatic transition dipole (eq 5) and the rate constant preex-
ponent (eq 21). We do it here for the coumarin-153 (C153)
dye as an example. For C153, we havem01 ) 6.55 D,m02 =
15 D,41aæ ) 10.4°,41b I1 ) -8.5 eV, andI2 ) -5.2 eV.41c The
ratios 41 and 42 are equal to, respectively, 0.60 and 0.12. In
order to get the Franck-Condon factorSe and the transverse
solvation terms (the last summand in eq 43 and the second term
in the brackets in eq 21) we need the response functionsµp and
µe. We estimate them from the dielectric continuum relations
8 and 9 withR0 ) 4 Å, εs ) 30, andε∞ ) 2. With pωs ) 5 eV
this givesSe ) 0.03. The term in the brackets in eq 21 reads
in the Mulliken approximation as

The second summand here is equal to 2× 10-5 for C153 and
the last summand in eq 43 amounts to 8× 10-3. Both are
negligible compared to other contributions, and for the parameter
θM we have (∆Edisp = 0) θM ) 1.6. Also, since the ratio 42 is
small, the adiabatic transition dipole obtained from the exact
relation 5 is given by the product ofθ and the adiabatic transition
dipole in the Mulliken-Hush approximation

where MMH
12 refers to the vacuum transition dipole in eq 39

with hcνji ) ∆J. The estimates performed here enable us to
draw several important conclusions: (i) the Franck-Condon
factorSe and the second term in brackets in eq 21 are both small
and can be omitted, (ii) the ET rate constant differs substantially
(2.6 times higher for C153) from the traditional golden-rule
expressions 19 and 20, (iii) the diabatic transition dipole makes
a significant contribution to the adiabatic transition dipole (eq

5) that is θ times higher (θM ) 1.6 for C153) than in the
Mulliken-Hush approximation (eq 39). We can thus simplify
the equation for the rate constant preexponent as follows

whereθ is given by eq 23. Note also that in C153 the optical
transition occurs from the deep groundS0 state. Many ET
systems are experimentally prepared by photoexcitation of either
donor or acceptor moieties.13b,34,42 In those cases, the portion
of m0

12 in the adiabatic transition dipole is expected to be even
more substantial.

A procedure called a generalized Mulliken-Hush approach
has been recently proposed by Cave and Newton21b,c to
overcome the difficulty of nonzerom0

12 and to provide an
unambiguous connection between adiabatic and nonadiabatic
parameters (see the Appendix). The procedure utilizes a
transformation of the diabatic basis{φ1, φ2} f {φa, φb}
(explicitly given by eqs A6 and A7) that diagonalizes the dipole
moment matrix. In the basis{φa, φb}, the two-state Hamiltonian
4 transforms to

where bi
+ and bi now denote the creation and annihilation

operators in the diabatic statesa andb with the energiesIa (eq
A8) andIb (eq A9) specified in the appendix. The off-diagonal
matrix elementm0

ab reads

where

and ∆M is given by eq A4 in the Appendix. When
(m0

12‚x̂)) 0, m0
ab is identically zero and the adiabatic transition

dipole

is directly connected to the ET matrix element

The advantage of using the transformation{φ1,φ2} f {φa,φb}
is that it makes exact the Mulliken-Hush connection between
the transition dipole and the ET matrix element and yields
diabatic quantities slowly varying with nuclear coordinates.21a

However, for the complete description of the ET problem, we
need the nonadiabatic rate constant derived through the pertur-
bation expansion in terms of the hopping Hamiltonian in eq
44. The derivation is the same as that carried out in section
2.2. It even simplifies when the transition dipolem0

ab is zero.
Since the hopping Hamiltonian does not depend on the solvent
field in this case, the preexponential factor of the rate constant
is given by the usual expression 20 withV12 replaced byVab.
The cost of preserving the simple connection to the transition
dipole and the traditional form of the rate constant preexponent

θM ) 1 - ∆I + ∆Edisp

I1 + I2

m02
2 - m01

2

(∆m0)
2

-

4m02
2 m01

2 sin æ

(∆m0)
2(I1 + I2)

(µp + µe) (43)

|V12θi|2 + 2â-1 µp|(m0
12‚x̂)|2 )

|V12|2[θM
2 + 2â-1 µp|2m01m02 sin æ

(I1 + I2)∆m0
|2]

M0
12 = θMMH

12

A ) θ2ANA

H̃0 ) ∑
i)a,b

(Ii - m0i‚(Ep + Ee)) bi
+bi +

( Vab - m0
ab‚(Ep + Ee)) (b1

+b2 + b2
+b1) (44)

m0
ab ) m0

12
∆m0

∆M12
- ∆m0

m0
12

∆M12

∆M12
2 ) ∆M2 + 4(M0

12)2 ) ∆m0
2 + 4(m0

12)2 (45)

M0
12 ) ∆M12

Vab

∆J

Vab ) V12

∆m0

∆M12
- ∆I

m0
12

∆M12
(46)
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is the complicated form of the activation barrier which now
loses the appealing physical clarity it had in the basis{φ1, φ2}.
The vertical energy gap∆Fi entering the activation barrier in
eq 19 becomes

with

The solvent reorganization energy is no longer the solvation
energy of the differential solute dipole by inertial solvent modes
and involves now the transition dipole. Also induction forces
(proportional to m0i

2 ) and dispersion interactions (given in
terms of m0

12) are now entangled in a nontrivial way in the
vertical energy gap. The two descriptions in terms of Hamil-
toniansH0 andH̃0 might be equivalent mathematically (within
the range of applicability of the perturbation expansion different
for the two Hamiltonians). We however prefer that in terms of
the HamiltonianH0, since it preserves the representation of the
ET energetics in terms of fundamental interaction potentials:
inductions, dispersions, and dipolar interactions. There is
obviously nothing fundamental in the particular form 20 of the
rate constant preexponential factor and we sacrifice it in favor
of the physical clarity of the barrier thermodynamics. In fact,
as we see below, the Mulliken-Hush connection between the
transition dipole and ET matrix element remains exact when
the effective matrix elementHDA instead ofV12 is used and, in
turn, HDA has a simple connection toVab.

Before proceeding to the analysis of transition dipoles we
first summarize our findings concerning nonradiative transi-
tions: (1) The renormalization of the ET matrix element by
the equilibrium field of solvent electrons and the instantaneous
field of the nuclear subsystem result in a new form of the
preexponential factor of the nonadiabatic ET rate constant (eq
21). (2) The deviation of the new preexponent from the well-
known expression 20 is controlled by the magnitude and
orientation of the diabatic transition dipolem0

12 relative to the
differential solute dipole∆m0. (3) When the projection of
m0

12 transverse to∆m0 and the parameterθ (eq 23) are both
zero, the transferred electron is localized at the donor or acceptor
sites, since the ET rate constant is zero. The transverse solvation
term (the second summand in brackets in eq 21) is small and
the ET rate is substantially diminished when onlyθ ) 0.

3.2. Transition Moments from Emission Lifetimes. In the
two-state Mulliken-Hush formula (eq 39), the transition dipole
is inversely proportional to the transition frequency andkrad is
approximately (neglecting the difference between〈νj2

3〉av and
〈νj2〉 av

3 ) linear in νj2 (substitute eq 39 into eq 34). Several
observations proved to conflict with the two-state Mulliken-
Hush picture: (i) plots ofkrad vs νj2 are often curved,34a,b (ii)
products of transition dipoles from eq 34 and corresponding
transition frequencies may depend on the solvent,43 and (iii)
ET matrix elements obtained by combining eqs 34 and 39 are
sometimes unphysically high.44

Two explanations of the disagreement between the Mulliken-
Hush theory and experiment have been proposed in the literature.
As we have alluded to above, the Mulliken explanation was
that it is m0

12 that is nonnegligible and eq 5 instead of eq 39
should be used. Murrell10,45advanced an alternative mechanism

of “intensity borrowing” due to coupling of the CT states to a
localized excited state of either donor or acceptor. In the Murrell
scheme, both the solvent dependence of〈M12〉2νj2 and curved
krad vs νj2 were attributed to the change of the strength of
coupling to locally excited states caused by the variation of the
vertical energy gapνj2. Eventually, the Murrell scheme became
prevailing in treating transition dipoles,34a,b,43b,c,46although no
detailed studies of the effect ofm0

12 have been conducted.
Here we try to analyze the Mulliken and Murrell concepts in
the framework of our derivation in section 2.3.

Our basic results concerning the solvent and transition energy
dependences of the transition dipole are given by eqs 36 and
37. From eq 37 we get

This means that any curvature of thekrad vs νj2 plot is produced
in the two-state model by the transverse component (M12)⊥. In
CT complexes with long-distance charge relocalizationm0

12 is
expected to be directed along∆m0

47 and the transverse
component should be small. Therefore, even for nonzero
m0

12, the condition (M12)⊥ ) 0 implies that the Mulliken-Hush
dependencekrad ∝ νj2 must hold. The naive expectation that
the linear trendkrad ∝ νj2 should break down when〈M12〉2 =
m0

12 - ∆m0V12/hcνj2 is substituted into eq 34 is therefore
incorrect. The reason is the dependence of the effective ET
matrix element on the solvent equilibrium field. The spectral
shift due to the solvent permanent dipoles and induction forces
cancels out in the equilibrium transition dipole given in eq 35
and the product of its longitudinal component and the transition
frequency varies with solvent only through the dispersion shift
∆Edisp (eq 36). ∆Edisp does not directly correlate with solvent
polarity, and therefore,∆Edisp is not expected to result in any
particular variation of the transition dipole with increasing
dipolar strength of the solvent. For|∆Edisp/∆I| , 1 the solvent
dependence vanishes altogether.

We can thus draw two important qualitative conclusions valid
for the two-state solute with (M12)⊥ ) 0: (i) the radiative rate
constant is proportional to the transition energy and (ii) the
product of the transition dipole and the transition frequency is
invariant of the solvent. Consequently, a nonlinear dependence
of krad on νj2 and/or a noticeable variation ofνj2〈M12〉2 with
solvent indicates that the Murrell mechanism of “intensity
borrowing” is in order. In fact, for all the data on transition
dipoles in different solvents we found in the literature,34b,43there
is a pronounced (and usually linear) dependence ofνj2〈M12〉2

on the transition frequency. This may indicate that in real
systems the effect on transition dipoles of mixing of CT states
with localized excited states is substantial or even dominant.34a

We however need to stress that both manifestations of the
Murrell intensity borrowing mechanism, curvature ofkrad vs νj2

and the solvent dependence ofνj2〈M12〉2, also follow from a
nonzero (M12)⊥ component. For most ET systems the Franck-
Condon factorSe of electronic polarizability is very small and
eq 37 predicts a linear variation of (νj2〈M12〉2)2 with νj2

2. In
Figure 1 we plotted this dependence using recent experimental
data of Kapturkiewicz and Herbich.43c A fairly good linear
correlation is actually seen. Moreover, the plot of [νj1〈M12〉1]2

- [Vh2〈M2〉2]2 vs (νj1
2 - νj2

2) shown in the lower part in Figure 1
is linear too, in accord with eq 38. Nevertheless, a coupling to
excited states might produce the same types of correlations and
it seems impossible to distinguish between the two mechanisms
without additional data. The information lacking in all mea-
surements of the solvent dependence of transition dipoles is the

∆Fi ) ∆I
∆m0

∆M12
+ 2V12

m0
12

∆M12
-

(µe + µp)∆M12(m01 + m02) ( λp

λp ) µp[∆m0
2 + 4(m0

12)2]

νj2
3(〈M12〉2)

2 ) νj2
3(M12) ⊥

2 + νj2(M2
12) |

2
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angle betweenm0
12 and∆m0 (or, at least, (M12)⊥). Knowledge

of the relative orientation of the two vectors would enable one
to discriminate between the Murrell mechanism and the two-
state formulation by using eqs 36-37.

The analysis of radiative lifetimes yields adiabatic CT
transition dipoles. It does not, however, provide a procedure
for splitting the moment 〈M12〉1 into its m0

12 and
(〈V12

eff〉2/hcνj2)∆m0 components, according to eq 35. However,
for nonadiabatic ET, we actually do not needV12 itself. Indeed,
for (m0

12‚x̂) ) 0, only the productV12θ and notV12 alone enters
the rate constant preexponent as the ET matrix element (eq 21).
In fact for (m0

12‚x̂) ) 0 we can recover the traditional form of
the nonadiabatic rate constant (eqs 19 and 20) just by replacing
V12 in eq 20 by the effective condensed phase value

This ET matrix element is connected to the longitudinal
projection of the condensed phase transition dipole by the
expression

When (M12)⊥ ) (m0
12‚x̂) ) 0, we have the formula

recovering the Mulliken-Hush relation that now becomes exact.
We therefore do not need to split〈M12〉i into the diabatic
transition dipolem0

12 and the vacuum ET matrix elementV12

parts and we can get the effective ET matrix element directly
from the transition dipole according to eq 48.

When the dispersion component of the spectral shift∆Edisp

is small compared to∆I, our treatment predicts that the product

of the vacuum values of the transition frequency and transition
dipole is related to the same product in the liquid as follows

SinceSe is usually much less then unity, eq 48 gives a simple
recipe for calculating the transition dipole in condensed phases
from its vacuum value

Also eq 48 can be rewritten as

This is an important result indicating that the ET matrix element
HDA in condensed phases can be obtained from the vacuum
adiabatic transition dipole and the vacuum transition frequency.
To be precise, we list the assumptions underlying eq 49: (i)
m01 is collinear withm02, (ii) (m0

12‚x̂) ) 0, and (iii) |∆Edisp/∆I|
, 1. Equation 49 also implies that we can establish a simple
relation betweenHDA and the ET matrix elementVab calculated
by the method of Cave and Newton21b,c (eq 46)

HDA is also connected to the extinction coefficientε(ν) for
absorption. Since an exact expression forε(ν) is available in
terms of our model, we present it here for completeness.ε(ν)
can be obtained by using the Einstein relations between the
absorption and emission rates35b andkrad(νj) defined in eq 27.
This yields

HereNA is the Avogadro number and

where FC(∆E) is given by eq 19 in our model and is easily
generalized to include intramolecular quantum vibrations.32,34b

The effective ET matrix elementHDA is, according to eq 47,
a complex function of both the electronic overlap
(m0

12 and V12 ) and the solvent (through∆Edisp). Notice that
HDA and hence the rate constant preexponent depends on the
vacuum energy gap∆I. Since m0

12 and V12 also contain a
generally unknown dependence on∆I,40b we will not address
this point here. As an illustration of the complicated nature of
HDA, we plotted in Figure 2 (upper part, curve 1) the dependence
of HDA on the interatomic distance in the LiF diatomic molecule
in vacuum representing perhaps one of the simplest ET systems.
HDA is obtained according to eq 49 from the quantum-
mechanical calculations by Werner and Meyer.21a The matrix
element|Vab| that is also shown in Figure 2 (upper panel, curve
2) is slightly smaller than|HDA| as expected from eqs 45 and
50. As is seen from Figure 2, only at large separations does
HDA decay exponentially with distance, as is usually assumed.
At distances close to the equilibrium separation in the LiF

Figure 1. Solvent polarity dependence of the transition moment
according to the data by Kapturkiewicz and Herbich.43c The upper panel
corresponds to emission data in different solvents (points). The lower
part gives the differenceδ(〈M12〉νj)2 ) (〈M12〉1νj1)2 - (〈M12〉2νj2)2 vs the
difference of squared wavenumbers for absorption and emission. The
solid lines represent regressions drawn through the experimental points.

νj0M0
12 ) exp(-1/2Se) νji〈M

12〉i

〈M12〉i ) M0
12/(1 + ∆νji/ν0), ∆νji ) νji - νj0

|HDA| )
hcνj0M0

12

∆m0
(49)

|HDA| ) exp(-1/2Se)
∆M12

∆m0
|Vab| (50)

ε(ν)
ν

) ( 8π3NAf(ε∞)

3000 ln(10)cε∞
) |M(ν)|2

|M(ν)|2 )

[∆m0
2
|HDA|2

(hν)2
+ [(M12)⊥]2 (1 + 2λp/â(hν)2)] FC(∆F1 - hν)

(4πλpkBT)1/2

|HDA| ) exp(-1/2Se)|V12θ| )

exp(-1/2Se)| m0
12

∆m0
(∆I + ∆Edisp) - V12| (47)

|HDA| )
hcνji(Mi

12)|

∆m0

|HDA| )
hcνji〈M

12〉i

∆m0
(48)

BATCH: jp5c17 USER: DIV: @xy4s4d/data2/CLS_pj/GRP_jx/JOB_i26/DIV_jp980352g DATE: 06/11/98

5036 J. Phys. Chem. A, Vol. 102, No. 26, 1998 Matyushov and Ladanyi



moleculeHDA passes through a maximum and then goes through
zero at a smaller distance. The latter behavior is a prediction
of the present theory and the pointHDA ) 0 corresponds to
localization of the transferred electron. In the lower part in
Figure 2 we give adiabatic electronic terms of the ground and
excited states21a in order to show that in LiF localization occurs
in the repulsive region of the intermolecular potential. We stress
here again that localization happens only in the first order
perturbation expansion for the rate constant. Higher order
contributions

may be nonzero, but the rate constant should be substantially
diminished atHDA ) 0.

Finally, we comment on the dependence of the ET rate
constant on the orientation of the diabatic transition dipole
m0

12. It seems that the description developed in the present
paper may be applicable to many CT systems. CT states are
often created by optical excitation of the donor or acceptor
moieties with a dipole moment of a photoexcited moiety oriented
nonparallel to the direction of CT. In such cases,m0

12 and
∆m0 are noncolinear leading to the type of solvent dependence
of the adiabatic transition moment discussed above. Changing
the orientation ofm0

12 relative to ∆m0 opens an additional
degree of freedom influencing the ET rate. Some optical
chromophores indeed show strong sensitivity of the orientation
of their transition dipoles to conformations.48 It might be
interesting to look at the dependence of the transition moment
orientation on the twisting angle in twisted ET systems where
ET is suppressed at the out-off-plane orientation of the donor
and acceptor subunits.47b Note also that rotation ofm0

12

relative to∆m0 may be used in creating molecular switches.
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Appendix

Here we derive eq 5 for the transition moment in the adiabatic
basisΨ1, Ψ2 diagonalizing the vacuum two-state Hamiltonian.
The basisΨi is formed by the linear combination of the diabatic
wavefunctionsæi which, following Lu et al.,49 we will write in
terms of the CT fractionf

where

and sign(V12) in eq A1 appears as a result of the convention

xf(1-f) ) |V12|/∆J, ∆J > 0. The adiabatic transition dipole

is the off-diagonal matrix element of the electric dipole moment
operator of the solute in the adiabatic basis A1. From eqs A1-
A3 we get

Equations A4 and A5 give the adiabatic differential and
transition dipoles in terms of diabatic parameters. The problem
usually appearing in quantum mechanical calculations is to get
the inverse solution: to determine diabatic parameters from
known adiabatic ones.21 This task cannot be solved in the
general case, because it demands determination of six diabatic
parameters

from five adiabatic quantities

The trick used to overcome this difficulty is to reduce the
number of diabatic dipole moments by using a linear transfor-
mation of the diabatic basis{φ1,φ2} f {φa,φb} diagonalizing
the dipole moment matrix.21 The transformation of the basis
resulting in〈φa|m̂0|φb〉 ) 0 can be explicitly written as follows
(m0

12 > 0)

where

Figure 2. The effective ET matrix elements (1)|HDA| and (2)|Vab| vs
the interatomic distance in the LiF diatomic molecule (upper panel).
|HDA| is obtained according to eq 49 from the calculations by Werner
and Meyer21a for the two lowest1Σ+ states of LiF shown in the lower
panel. The dashed lines indicate the ET localization point.

kNA ∝ ∑
R

|HAR|2|HRD|2

Ψ1 ) x1 - fæ1 - sign(V12) xfæ2 (A1)

Ψ2 ) sign(V12)xfæ1 + x1 - fæ2

f ) 1
2

- ∆I
2∆J

, ∆J ) x∆I2 + 4|V12|2 (A2)

M0
12 ) 〈Ψ1|m̂0|Ψ2〉 (A3)

∆M ) M0
22 - M0

11 ) ∆m0
∆I
∆J

+ m0
12

4V12

∆J
(A4)

M0
12 ) m0

12∆I
∆J

- ∆m0

V12

∆J
(A5)

I1, I2, V12, m01, m02, m0
12

J1, J2, M0
11, M0

22, M0
12

φa ) x1 - gφ1 - xgφ2 (A6)

φb ) xgφ1 + x1 - gφ2 (A7)

g ) 1
2

-
m0

12

∆M12
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and∆M12 is given by eq 45. In this basis, we have only five
diabatic parameters that can be fully defined in terms of
adiabatic state properties. The diabatic energies become

and the ET matrix elementVab is given by eq 46.
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